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Synopsis

This book provides a solid foundation for the analysis of radiation and
diffraction of water waves by large bodies such as offshore structures and
ships. The book consists of two main parts. Four chapters consider far-
field waves and wave patterns for a general dispersion relation associated
with plane waves, with specific applications to offshore structures in waves
and ships steadily advancing in calm water or through waves. Seven chap-
ters expound a new method—that greatly differs from the usual Green-
function and boundary-integral-equation method—for evaluating near-field
flows. Specifically, two fundamental questions: what boundary-integral
equation should be solved? and how can this equation be solved? are recon-
sidered. Main results of this reconsideration are an integral equation that
is much simpler than the integro-differential equation currently solved, and
a method of solution—called Fourier-Kochin (FK) method—that is simpler
and more general than the usual Green-function method. Indeed, the FK
method avoids major complexities associated with that usual method, and
moreover is directly applicable to a wide class of plane dispersive waves,
such as waves in very large floating elastic structures and ice mechanics.
An optimal decomposition of the disturbance created by a general forcing
function into waves and a non-oscillatory local disturbance is also given.
This decomposition and the FK method, which both are directly applicable
to general plane dispersive waves, and the simple integral equation given in
the book lay the foundation of a new type of panel methods for computing
near-field flows and far-field waves created by ships or offshore structures.
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Preface

This book considers wave diffraction and radiation by ships and offshore
structures. Realistic and practical methods that account for the dominant
flow physics and are suited for applications to design and optimization are
crucial. Indeed, analytical methods and related computational tools that
are both realistic and practical—two critical requirements—are essential.
Accordingly, the analysis expounded in the book is based on potential-flow
theory, which is realistic for diffraction-radiation of water waves by large
bodies such as ships and offshore structures, and the related method of
Green functions and boundary-integral flow representations.

Three major classes of flows are primarily considered: diffraction and
radiation of regular (time-harmonic) waves by an offshore structure (or some
other stationary body such as a moored ship) in water of uniform finite
depth, and flow around a ship that steadily advances in calm water or
through regular waves. The general boundary-value problems associated
with these three basic classes of flows are defined in chapter 1.

Far-field free waves and near-field local flow

The flow around a ship or an offshore structure is usefully decomposed
into waves and a non-oscillatory local flow, which is important at the body
(ship or offshore structure) and in its vicinity but decays rapidly away from
the body. Although created by the body, the waves propagate with little
influence from the body, and accordingly are commonly called free waves.

Both the local flow, important in the near field (at and near the body),
and the free waves dominant in the far field (away from the body) are main
features of flows around ships and offshore structures. Computation of the
local-flow component is required to evaluate the pressure distribution at the
body surface and the related hydrodynamic coefficients (added mass, wave
damping), linear and nonlinear wave loads, and body motions. The free
waves and the related far-field wave patterns created by ships and offshore
structures are also important. Indeed, these far-field wave patterns are the
most conspicuous feature of flows around ships and offshore structures.
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Free waves are considered in Part 1, which consists of four chapters, and
near-field flows—for which both the waves and the local-flow component are
important—are considered in Part 2, which contains seven chapters.

PART 1: Free waves and wave patterns (chapters 2–5)

A radiation condition that relies on observations, e.g. a ship that steadily
advances in calm water creates waves behind the ship but not ahead, is
commonly invoked in the analysis of wave diffraction-radiation in ship and
offshore hydrodynamics. Radiation conditions are not obvious for a ship
that advances through regular waves in the regime where waves are created
both behind the ship and ahead. However, radiation conditions are not
necessary and indeed are not invoked in the book, which considers flows
that slowly grow from rest at time T = −∞ as is expressed in (1.22).

Thus, chapter 2 considers basic and modified elementary wave functions.
The basic wave functions satisfy Laplace’s equation and the boundary con-
ditions at the sea bottom and at the free surface. These basic elementary
waves are subsequently modified in accordance with flows that slowly grow
from a state of rest at the time T = −∞ and vanish in the far field. Free
waves created by ships or offshore structures are then expressed in chapter
2 as a linear superposition of these generalized elementary waves. Chapter
3 presents general basic relations and far-field stationary-phase approxima-
tions that explicitly determine the group and phase velocities, as well as
far-field wave patterns, in terms of the dispersion function. These relations
hold for a broad class of plane dispersive waves in a general medium.

Chapters 2 and 3 include applications of the basic relations given in
these two chapters for a general dispersive medium to the simple case of
offshore structures in regular waves. The relations given in chapters 2 and 3
for general dispersive waves are also applied in chapters 4 and 5 to the free
waves created by a ship that steadily advances in calm water or through
regular waves. The application to a ship that advances through regular
waves given in chapter 5 provides a vivid illustration of the notable fact
that a simple dispersion relation can define multiple dispersion curves and
a surprisingly rich set of wave patterns that involve widely different waves.

PART 2: Near-field local flows (chapters 6–12)

The method—commonly called Green-function and boundary-integral
method—for solving boundary-value problems associated with Laplace’s
equation (or similar equations) and arbitrary 3D geometries is expounded
in chapter 6. This general method is then applied in chapters 7–9 to the
major classes of flows around ships and offshore structures considered in
the book. Specifically, chapter 7 defines the Green functions associated
with these classes of flows, and chapters 8 and 9 apply the classical Green
identity given in chapter 6, with the Green functions defined in chapter 7,
to formulate boundary-integral flow representations. Lastly, chapters 10–12
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expound the method of solution called Fourier-Kochin (FK) method. Some
highlights of chapters 7–12 are now noted.

Green functions (chapter 7)

The Green functions associated with diffraction-radiation of regular
waves by an offshore structure in deep water or in finite water-depth, and
the Green functions associated with a ship that advances at a constant speed
in calm deep water or through regular waves, are considered in chapter 7.

A Green function is commonly defined as the velocity potential of the
flow that is created at a flow-field point ξ by a point-source located at a
source-point x that is submerged below the free surface. However, this
common interpretation breaks down if the singularity-point x is located
at the free-surface plane z = 0. In that case, the Green function must be
associated with a flux through the plane z = 0, as is explained in section 6.7
and is explicitly stated in the fundamental relations (8.5c-d) and (9.4b-c).

A Green function can also be viewed as the velocity potential of the flow
created at a flow-field point x by a point-source at a point ξ. This symmetry
however involves a subtlety—related to the boundary condition at the free
surface—for a ship that steadily advances in calm water or through waves,
as is explained in section 6.8 and is made explicit in the boundary conditions
at the free surface in (9.3c) and (9.4b-c).

The Green functions considered in the book are associated with the
Laplace equation, and accordingly are expressed in terms of two elementary
solutions of the Laplace equation: the free-space singularity S, widely called
Rankine source, and the basic wave function E, which are defined as

S ≡ 1/
√

(ξ−x)2 + (η−y)2 + (ζ−z)2 and E ≡ e kz+ i (αx+β y)

where α and β are Fourier variables and k ≡
√
α2 + β2 . Specifically, the

Green functions, commonly denoted asG, are expressed in terms of a Fourier
component GF that is given by a Fourier superposition of elementary wave
functions E and a Rankine component GR defined in terms of Rankine
sources S. The elementary solutions S and E of the Laplace equation are
related via Fourier transformation, and the Rankine-Fourier decomposition
GR + GF consequently is not unique. The benefits of this non-uniqueness
are exploited in chapter 7 to define optimal Rankine-Fourier decomposi-
tions of the Green functions associated with potential flows around offshore
structures in waves and ships advancing in calm water or through waves.

Chapter 7 also includes a Green function—useful for a ship advancing
through regular waves of frequency ω at a constant speed Vs in the regime
Vs ω/g < 1/4 where g is the acceleration of gravity—that agrees with the
Green functions associated with the special cases Vs = 0 or ω = 0 . Specifi-
cally, expressions (7.53) provide a formal decomposition of the Green func-
tion into a component that represents a flow scaled in terms of the length
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g/ω2 and contains ring waves, and a component that is scaled with respect
to V 2

s /g and contains inner and outer Kelvin-like V waves.

Boundary-integral flow representations (chapters 8 and 9)

The method of Green function and boundary-integral representation ex-
pounded in chapter 6 is applied in chapters 8 and 9 to the general boundary-
value problems associated with wave diffraction and radiation by an offshore
structure in regular waves (chapter 8) and a ship that steadily advances
through waves (chapter 9). Specifically, Green’s basic identity is applied to
the classical Neumann-Kelvin linear boundary-value problem for potential
flow around the hull surface of a body (ship, offshore structure) that pierces
the free surface. Green’s fundamental identity is also applied to an alterna-
tive linear flow model—called rigid-waterplane linear flow model—in which
a free-surface-piercing ship or offshore structure is treated as a body that
is closed via a rigid waterplane submerged at an infinitesimally small depth
below the free surface.

Green’s identity applied to the usual Neumann-Kelvin linear flow model
or the rigid-waterplane flow model yields identical boundary-integral flow
representations for a stationary body. However, these alternative linear flow
models yield different (although consistent) flow representations for a ship
that advances through waves or in calm water. The rigid-waterplane flow
model—with the crucial constraint that the thin layer of water between
the rigid lid that closes the submerged body and the waterplane above the
lid is a ‘dead-water’ region—yields a remarkably simple boundary-integral
flow representation. This flow representation holds for a stationary body
in regular waves as well as a ship that steadily advances in calm water or
through regular waves. A common feature of the alternative boundary-
integral flow representations given in chapters 8 and 9 is that they are
weakly singular and hence define flow potentials that are continuous at the
hull surface of the ship or offshore structure.

A general method of solution (chapters 10–12)

The boundary-integral flow representations given in chapters 8 and 9
express the flow potential associated with a body (offshore structure, ship)
as distributions of a Green function and its gradient over the surface of
the body. The Fourier components in the Rankine-Fourier representations
of the Green functions for the classes of flows considered in chapter 7 are
defined by singular double Fourier integrals. The common Green-function
method implemented in current panel methods involves two basic steps. The
first step is the ‘Fourier-integration’ that is required to evaluate the Green
function, and its gradient, associated with a particular class of flows. This
task involves complicated mathematical analysis, reported in innumerable
studies for the major classes of flows around ships and offshore structures
considered in the book. The second step in the usual Green-function method
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is the ‘space-integration’ required to integrate the Green function and its
gradient over the panels that approximate the body surface. This step, while
less difficult than the ‘Fourier-integration’ step, requires special attention
because the Green functions associated with the classes of flows considered
in the book involve intricate singularities. The usual Green-function method
has been steadfastly applied in ship and offshore hydrodynamics (and other
fields) over the past fifty years, but is not considered in the book.

A simpler and more general alternative approach, called Fourier-Kochin
method, is expounded instead. The ‘space-integration’ over the panels that
approximate the hull-surface of a body (ship, offshore structure), which
is performed after the ‘Fourier-integration’ in the usual Green-function
method, is performed first (and the ‘Fourier-integration’ is performed next)
in the Fourier-Kochin method. Thus, the Fourier and space integrations
are performed in reverse order in the Fourier-Kochin method expounded in
chapter 10. An obvious benefit of this approach is that the space-integration
merely consists in integrating smooth elementary functions (exponential and
trigonometric functions) over the panels that approximate a body surface,
whereas the usual Green-function method requires integration of intricate
singularities imbedded in the Green functions associated with flows around
ships or offshore structures.

Another major advantage of the Fourier-Kochin method is that it avoids
the daunting mathematical analyses of Green functions that are required—
for every class of flows around ships and offshore structures or every other
type of dispersive waves—in the usual Green-function method. Indeed, an
important benefit of the Fourier-Kochin method is its generality, as is now
explained.

The ‘Fourier integration’ step, which evidently is the major task in the
Fourier-Kochin method, consists in evaluating a double Fourier integral that
is singular along every curve, called dispersion curve, defined (in the Fourier
plane) by the dispersion relation relevant to the class of dispersive waves
under consideration. This crucial fundamental task in the Fourier-Kochin
method is considered in chapter 11 for a general dispersion function, i.e. for
a broad class of dispersive plane waves, and a general amplitude function
associated with a general distribution of singularities or forcing function.
Specifically, chapter 11 presents a fundamental decomposition of the general
singular double Fourier integral associated with the Fourier-Kochin method
into a wave component and a non-oscillatory local disturbance. The waves
in this general flow decomposition—which does not involve approximations,
i.e. is exact—are defined by a single Fourier integral along every dispersion
curve defined by the dispersion relation, and the local disturbance is given
by a double Fourier integral that has a smooth and localized integrand.

The basic waves and local-effects decomposition given in chapter 11 for
a general dispersion relation and a general forcing function is applied in
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chapter 12 to the specific dispersion relations associated with an offshore
structure in regular waves and a ship that advances in calm water or through
regular waves. The expressions given in chapter 12 yield exact analytical
representations, suited for accurate numerical evaluation, of the waves and
local flows created by a general distribution of singularities for the major
classes of flows around ships and offshore structures considered in the book.

Foundation of a new type of panel methods

In summary, chapters 6–12 reconsider the two most important issues
associated with the evaluation of near-field potential flows around ships
and offshore structures via panel methods. These two fundamental ques-
tions are: (i) What boundary-integral flow representation should be solved?
and (ii) How can this flow representation be solved? The reconsideration
of these two fundamental questions has led to (i) the remarkably simple
boundary-integral flow representation (9.35) and (ii) an alternative, called
Fourier-Kochin method, to the usual Green-function method of solution.
The boundary-integral flow representation given in chapters 8–9, and the
Fourier-Kochin solution method expounded in chapters 10–12 provide an
alternative to the approach that has been steadfastly applied in innumer-
able numerical studies over the past fifty years, and are main contributions
of the book. Indeed, a primary purpose of the book is to consider crucial
fundamental issues rather than merely review known results and theories.

Relevance to a broad class of plane dispersive waves

As was already noted, the Fourier-Kochin approach and the associated
general decomposition into waves and local-effects given in chapters 10 and
11 hold for general dispersion relations, and are then directly applicable to a
broad class of plane dispersive waves; e.g. flows around bodies moving over
very large floating structures or ice sheets modeled as thin elastic plates,
free-surface flows dominated by surface tension, and seismic waves.

The analytical expressions, notably the expressions for the wave patterns
and the group velocity, obtained in the analysis of free waves expounded in
chapters 2 and 3 likewise only involve the dispersion function, and hence
are applicable to a broad class of plane dispersive waves, in addition to ship
waves considered in chapters 4 and 5.

The classical method of Green function and boundary-integral represen-
tation expounded in chapter 6 and its applications in chapters 7–9 to the
boundary-value problems associated with flows around ships and offshore
structures are relevant to similar boundary-value problems in physics and
engineering. In particular, the Fourier components in the expressions for the
Green functions given in chapter 7 mostly depend on the dispersion function
and are then applicable—with appropriate modifications—to a wide class
of plane dispersive waves.
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Focus on fundamental analytical flow relations

The primary goal of the book is to expound fundamental analytical flow
relations that underly the analysis of far-field flows (free waves) and near-
field flows due to ships and offshore structures. Numerical implementations
of these analytical flow representations can be accomplished in alternative
ways, and this vast issue is beyond the scope of the book.

Some elementary material, including basic knowledge about the energy
transported by elementary plane progressive waves and the decomposition
of the flow around an offshore structure into a diffraction problem and six
radiation problems associated with basic small-amplitude translational and
rotational rigid-body motions of the structure, is not considered in the book.
Analytical relations for the wave energy radiated by a ship or an offshore
structure, and the related wave drag and wave damping, obtained from
an analysis of the far-field waves created by the body, although elegant
and interesting, are also ignored because the alternative near-field pressure-
integration method is most directly related to the method of Green function
and boundary-integral flow representation expounded in the book.

Target audience and requirements

The boundary-value problems and the corresponding Green functions,
boundary-integral flow relations, and analytical representations of flows due
to a general distribution of singularities for an offshore structure in waves
or a ship that steadily advances in calm water or through waves unavoid-
ably involve extensive mathematical developments. However, the required
mathematics actually are fairly simple, and all mathematical developments
are expounded in a self-contained way in the book, which therefore is suited
for scientists, engineers, graduate and undergraduate students with basic
knowledge of fluid mechanics and water waves, and a desire for a solid basis
for the analysis of far-field waves and near-field flows in ship and offshore
hydrodynamics and/or in similar dispersive media.

The book can be used as a textbook for several courses. Specifically,
chapters 1-3 can be used as an introductory course on water waves and other
classes of dispersive plane waves. Chapters 1-5 provide a more complete
exposition that includes specific applications to the far-field wave patterns
created by a ship that advances in calm water or through regular waves.

Chapters 1-3 plus chapter 6 provide an introduction to both far-field
free waves and the method of Green function and boundary-integral flow
relations. The addition of chapters 7–12 provides a full in-depth account of
theoretical methods suited for the analysis and the analytical representation
of near-field flows. The analysis of far-field waves given in chapters 2–3, the
general method of Green function and boundary-integral relation introduced
in chapter 6 and the Fourier-Kochin method expounded in chapters 10–11
are directly applicable to a broad class of dispersive plane waves, and can
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then be used as an introduction to the analysis of such waves.

Notes

Notes, marked as [m,n] to identify note number n in chapter number m,
are included in the text and gathered in the last chapter entitled ‘Notes’.

Authors’ contributions

This book, started over thirty years ago as the first author’s efforts to
understand difficult issues and subtleties associated with potential flows
around ships and offshore structures, was written by the first author, who
is also mostly responsible for the analysis given in chapters 1-10 and in sec-
tions 11.1 and 11.2. The two authors contributed roughly equally to the
elucidation of the optimal wave and local-effects decomposition expounded
in sections 11.3 and 11.4. The second author is primarily responsible for
the analysis underlying the representation (7.53) of the Green function as-
sociated with a ship that advances through regular waves in the regime
0 ≤ τ < 1/4 , and also had a leading role in the analysis given in sections
11.5 and 11.6 and in chapter 12. Moreover, all the figures in the book
are due to the second author, who made further important contributions
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Chapter 1

Basic equations and
boundary-value problems

This chapter defines the general boundary-value problems associated with
three main classes of flows in ship and offshore hydrodynamics:

(i) diffraction-radiation of regular waves by a large stationary body such
as an offshore structure or a moored ship in water of uniform finite depth,

(ii) flow around a ship that steadily advances in calm deep water, and
(iii) wave diffraction-radiation by a ship that advances at a constant

speed through regular waves in deep water.

1.1 Basic relations

The flow around a ship, of length Ls , that advances at a constant speed Vs
along a straight path in calm water or through regular waves is considered
in this book. The special case Vs = 0 that corresponds to a stationary body
such as an offshore structure, of size characterized by a length Ls , is also
considered. The acceleration of gravity is denoted as g, and T denotes time.

The flow due to the ship is observed from a Galilean frame of reference
and a related right-handed Cartesian system of coordinates (X,Y, Z) that
follows the straight path of the steadily advancing ship. The undisturbed
free surface is chosen as the plane Z = 0 and the Z axis points upward.
The X axis is taken along the track of the ship and points toward the ship
bow, as is shown in Fig.1.1.

The wetted hull surface of the ship or offshore structure is denoted as
ΣH. The unit vector n ≡ (nx, ny, nz) normal to the hull surface ΣH points
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X

Z Y
ΣF

ΣH
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Figure 1.1: Galilean frame of reference and related Cartesian system of
coordinates (X,Y, Z) used to analyze the flow around a ship that advances
at a constant speed in calm water or through regular waves.

into the water, i.e. outside the ship. The free surface and the flow region
outside ΣH are denoted as ΣF and D, as is shown in Fig.1.1. A point
within the flow domain D or at its boundary surface ΣF∪ΣH is denoted as
X ≡ (X,Y, Z).

The flow around the ship or offshore structure is analyzed within the
classical theory of incompressible inviscid flows. This theoretical framework
is realistic for wave diffraction-radiation by large bodies such as ships and
offshore structures of interest in the book [1,1]. The velocity of the flow
created by the ship is then given by

∇Φ ≡ (ΦX ,ΦY ,ΦZ) where ∇≡ (∂X , ∂Y , ∂Z )

and the flow potential Φ(X,T ) satisfies the Laplace equation

∇2Φ ≡ ∇·∇Φ ≡ ΦXX + ΦYY + ΦZZ = 0 in D . (1.1)

At a large distance from the ship, the flow due to the ship vanishes and
the far-field boundary condition

Φ→ 0 as
√
X2 + Y 2 + Z2→∞ (1.2)

holds. In water of uniform depth D, the sea-bottom boundary condition

ΦZ = 0 at Z = −D (1.3)

must be satisfied.

Two boundary conditions—known as the dynamic and kinematic free-
surface boundary conditions—must be satisfied at the free surface, which is
defined as

Z = ZF(X,Y, T ) . (1.4)
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These boundary conditions are considered in the next section. In addition,
the flow-velocity component normal to the hull surface ΣH and the normal
velocity of the hull surface ΣH are equal at ΣH. The hull-surface boundary
condition is considered in section 1.4.

In the Galilean frame of reference that follows the ship, the flow velocity
is given by

(ΦX−Vs ,ΦY ,ΦZ) (1.5)

where ∇Φ is the velocity of the flow created by the ship and the velocity
(−Vs , 0, 0) is the apparent uniform stream that opposes the forward speed
of the ship.

The flow pressure P (X, T ) is explicitly determined in terms of the flow
potential Φ and the related flow velocity ∇Φ via the Bernoulli relation

P

ρw
+ gZ + ΦT +

(ΦX−Vs)2 + Φ2
Y + Φ2

Z

2
=
Patm
ρw

+
V 2
s

2

where ρw denotes the density of water and Patm is the atmospheric pressure.
One then has

(P −Patm)/ρw + gZ = VsΦX − ΦT − (Φ2
X + Φ2

Y + Φ2
Z)/2 . (1.6)

Far away from the ship, i.e. in the far field, one has ΦT ≈ 0 and ∇Φ ≈ 0
in accordance with the far-field condition (1.2), and the Bernoulli relation
(1.6) becomes

P −Patm = −ρw gZ .

Motions of both the water and the air below and above the free surface
ΣF occur concurrently with the motions of ΣF. Related variations in the
air pressure about the atmospheric pressure associated with unperturbed
conditions are proportional to the air density ρair in accordance with the
Bernoulli equation applied to air motions above ΣF. These variations of the
air pressure above the free surface have a negligible influence on the flow of
water below ΣF because ρair � ρw . The air pressure can then be regarded
as effectively constant at the free surface, equal to the atmospheric pressure,
for the purpose of determining the flow of water; i.e. the water-flow can be
analyzed independently of the air-flow. This decoupling of the flows above
and below a free surface does not hold for internal waves, for instance, where
the densities of the upper and lower fluids are nearly equal.

The flow pressures in the water and in the air are equal at the water-
air interface, except for the jump in pressure that can be sustained due
to surface tension. This pressure jump is proportional to the curvature of
the free surface, and can be neglected except for small-scale free-surface
deformations that have no practical effect at the scale of ships and offshore
structures. Thus, surface tension is ignored hereafter.
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1.2 Free-surface boundary conditions

Dynamic free-surface boundary condition

The pressure at the free surface ΣF can differ from the atmospheric pressure
Patm for some types of ships, notably hovercrafts. In such a case, the
pressure is given by

P =Patm +P F at ΣF (1.7)

where P F(X,Y, T ) represents a distribution of pressure applied at ΣF . The
Bernoulli relation (1.6) then yields

g ZF = VsΦX − ΦT − (Φ2
X + Φ2

Y + Φ2
Z)/2−P F/ρw at ΣF (1.8)

where ΦT and ∇Φ are evaluated at the free surface Z = ZF. This bound-
ary condition, called dynamic free-surface boundary condition, determines
the free-surface elevation ZF(X,Y, T ) in terms of the pressure P F(X,Y, T )
applied at the free surface and the flow potential Φ(X,Y, Z = ZF, T ).

In the particular case P F = 0 and ΦT = 0, which corresponds to steady
flow around a common displacement ship that advances at a constant speed
Vs in calm water, the dynamic free-surface boundary condition (1.8) yields

2 g ZF = V 2
s − [(Vs − ΦX)2 + Φ2

Y + Φ2
Z ] ≤ V 2

s .

This expression yields the upper bound

g ZF/V 2
s ≤ 1/2 (1.9)

for the elevation ZF of the free surface. The general upper bound (1.9)
is important, e.g. because it determines whether a plane progressive wave,
and the bow wave created by a ship that steadily advances in calm water,
is steady or unsteady. [1,2]

Kinematic free-surface boundary condition

The kinematic free-surface boundary condition is now considered in the
general case when a flux of water, denoted as QF(X,Y, T ) and defined as
positive or negative if water is added or removed through the free surface, is
allowed. This general case is considered because it is required further on in
the formulation of boundary-integral flow representations based on Green
functions. The kinematic free-surface boundary condition is

(ΦX−Vs ,ΦY ,ΦZ) · n = VF· n−QF (1.10)

where (ΦX−Vs ,ΦY ,ΦZ) is the flow velocity (1.5), VF denotes the velocity
of the free surface ΣF, n is the upward-pointing unit vector normal to ΣF,
and QF is the flux of water through ΣF.
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Equation (1.4) can be expressed as

F (X , T ) ≡ Z−ZF(X,Y, T ) = 0 . (1.11)

At any given instant of time T , one has both

F (X , T ) = 0 and F (X + X′, T ) = 0

if X and X + X′ are two arbitrary points of the free surface. In the limit
X′→ 0, one then has

0 = F (X+ X′, T )−F (X , T ) = X′ · ∇F (X , T ) .

This relation shows that the vector ∇F is normal to the surface F = 0, as
is well known. The unit vector n normal to the free surface therefore is

n = ∇F/‖∇F‖ = (−ZFX ,−ZFY , 1) /
√

1+ (ZFX)2 +(ZFY )2 (1.12)

where (1.11) was used. The vector n defined by (1.12) points upward.
Expression (1.12) yields

n ·∇Φ = (ΦZ − ΦXZ
F
X − ΦY Z

F
Y )/

√
1+ (ZFX)2 +(ZFY )2 . (1.13)

A point X of the free surface F (X , T ) = 0 at some time T becomes the
point X+VF(X , T ) dT of the surface F (X+VFdT, T+dT ) = 0 at the time
T + dT , where VF(X, T ) is the velocity of the free-surface point X at the
time T . It follows that one has

0 = F (X+VFdT, T + dT )−F (X , T ) = (VF ·∇F +FT ) dT .

One then has

VF ·∇F = −FT = ZFT

where (1.11) was used. This relation and (1.12) yield

VF · n = VF ·∇F/‖∇F‖= ZFT /
√

1+ (ZFX )2 +(ZFY )2 . (1.14)

The relations (1.10) and (1.12)-(1.14) finally yield the kinematic free-
surface boundary condition

ΦZ − ZFT +Vs Z
F
X − ΦXZ

F
X − ΦY Z

F
Y +QF

√
1+(ZFX )2 +(ZFY )2 = 0 (1.15)

where ∇Φ is evaluated at the free surface Z = ZF (X,Y, T ).
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Linearization

Both the kinematic boundary condition (1.15) and the dynamic boundary
condition (1.8) involve nonlinear terms. Moreover, the location Z = ZF

of the free surface, where the boundary conditions (1.8) and (1.15) hold, is
unknown. An analysis of wave diffraction-radiation by ships and offshore
structures based on the nonlinear free-surface boundary conditions (1.15)
and (1.8) is then extremely difficult. Moreover, such an analysis might be
of limited interest because wavebreaking typically occurs if nonlinearities
are significant, and the potential-flow assumption underlying the boundary
conditions (1.15) and (1.8) is not justified in that case.

For most practical applications in ship and offshore hydrodynamics, the
nonlinear terms in the boundary conditions (1.8) and (1.15) are then either
neglected or taken into account via a perturbation analysis for ambient
waves of small amplitude [1,3]. The free-surface boundary conditions (1.8)
and (1.15) are applied at the plane Z = 0 of the undisturbed free surface in
a linear analysis, and also in a weakly nonlinear analysis.

The linear approximations to the free-surface boundary conditions (1.8)
and (1.15) are

gZF = Vs ΦX − ΦT −P F/ρw , (1.16a)

ΦZ − ZFT + Vs Z
F
X +QF = 0 . (1.16b)

For a ship that steadily advances in calm water or through regular waves,
the linear boundary conditions (1.16) are associated with the realistic and
practical Kelvin-Michell assumption that the velocity∇Φ of the flow created
by the ship is small in comparison to the ship speed Vs . The linear dynamic
condition (1.16a) explicitly determines the free-surface elevation ZF in terms
of the flow potential Φ at Z = 0 and the pressure P F applied at the free
surface.

Substitution of expression (1.16a) for the free-surface elevation ZF into
the linear kinematic condition (1.16b) yields

gΦZ + ΦTT − 2VsΦXT +V 2
s ΦXX = (VsP

F
X −P F

T )/ρw − g QF . (1.17a)

This linear boundary condition can be expressed more compactly as

gΦZ + (Vs ∂X − ∂T )2 Φ = (Vs ∂X − ∂T )P F/ρw − g QF . (1.17b)

The boundary conditions (1.17) only involve the flow potential Φ and its
derivatives at the plane Z = 0 of the undisturbed free surface. The free-
surface boundary condition (1.17a) becomes

gΦZ + ΦTT = −P F
T /ρw − g QF if Vs = 0 . (1.17c)
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The Bernoulli relation (1.6) readily yields the linear approximation

(P −Patm)/ρw + g Z = Vs ΦX − ΦT = (Vs ∂X − ∂T )Φ (1.18)

to the dynamic flow pressure.

1.3 Steady and time-harmonic flows

A flow is not fully determined unless initial conditions are specified at some
time T0 . The basic issue of defining initial conditions for time-harmonic flows
associated with diffraction-radiation of regular waves by an offshore struc-
ture, and for steady and time-harmonic flows around a ship that steadily
advances in calm water or through regular waves, is now considered [1,4].

Ship that steadily advances in calm water

A steady flow around a ship that advances at a constant speed Vs in calm
water can be assumed to slowly grow from rest at the time T = −∞ in
accordance with the flow potential Φ̂(X , T ) defined as

Φ̂(X , T ) = Φ(X) e ν T where 0 < ν . (1.19)

The flow potential Φ̂(X , T ) satisfies the initial conditions Φ̂ = 0 and Φ̂T = 0
at T = −∞, and steady state is obtained for ν = +0 . The flow potential
(1.19) can be associated with a ship hull ΣH that slowly grows from a needle-
like ship, which creates no flow disturbance, and a free-surface pressure
P Fe ν T and flux QFe ν T that slowly grow from P F = 0 and QF = 0, at the
time T = −∞ .

Substitution of expressions P Fe ν T and QFe ν T for the pressure and the
flux applied at the free surface, and expression (1.19) for the flow potential
into the Laplace equation (1.1), the far-field condition (1.2) and the sea-
bottom boundary condition (1.3) yield

∇2 Φ = 0 in D , Φ→ 0 as X→∞ , ΦZ = 0 at Z = −D , (1.20)

while the linearized free-surface boundary condition (1.17b) becomes

gΦZ + (Vs ∂X − ν)2 Φ = (Vs ∂X − ν)P F/ρw − g QF at ΣF .

The growth parameter ν = +0 in this boundary condition is crucial on
the left side but is inconsequential on the right side, which is merely a forcing
term that does not affect the dispersion relation as is made clear further on
in the book. The free-surface boundary condition associated with the flow
around a ship that steadily advances in calm water then becomes

gΦZ + (Vs ∂X − ν)2 Φ = VsP
F
X /ρw − g QF at ΣF . (1.21)
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Offshore structure in regular waves

The time-harmonic flow around an offshore structure in ambient regular
waves of frequency ω can similarly be assumed to slowly grow from rest at
the time T = −∞ in accordance with a flow potential

Φ̂(X , T ) = Re Φ(X) e (ν− iω)T where 0 < ν . (1.22)

A time-harmonic flow is obtained for ν = +0 . The flow potential (1.22) can
be associated with diffraction-radiation by an offshore structure in regular
waves of amplitude A that slowly grows as A e ν T and a free-surface pressure
P F and flux QF that similarly grow as

P F e (ν− iω)T and QF e (ν− iω)T . (1.23)

Substitution of expressions (1.22) and (1.23) into the Laplace equation
(1.1), the far-field condition (1.2), the sea-bottom boundary condition (1.3)
and the free-surface boundary condition (1.17c) show that the potential Φ
in (1.22) satisfies Laplace’s equation and the boundary conditions (1.20)
and the free-surface boundary condition

gΦZ − (ω + i ν )2 Φ = iωP F/ρw − g QF at ΣF . (1.24)

The inconsequential term ν = +0 is ignored on the right side of (1.24), as
in (1.21).

Ship that steadily advances through regular waves

The potential of the flow around a ship that steadily advances through
regular waves can also be expressed as in (1.22), where ω now denotes the
encounter wave frequency (the frequency observed in the Galilean frame of
reference that follows the ship), associated with ambient regular waves of
amplitude A e ν T and a free-surface pressure P F and flux QF that slowly
grow from nil in accordance with expressions (1.23).

Substitution of these expressions into the Laplace equation (1.1), the
far-field condition (1.2), the sea-bottom boundary condition (1.3) and the
free-surface boundary condition (1.17b) show that the flow potential Φ in
(1.22) satisfies the Laplace equation and the boundary conditions (1.20),
and the free-surface boundary condition

gΦZ + (Vs ∂X + iω − ν )2 Φ = (VsP
F
X + iωP F )/ρw − g QF at ΣF (1.25)

where ν is taken as ν = 0 on the right side, as in (1.21) and (1.24). The free-
surface boundary condition (1.25) is identical to (1.21) or (1.24) if Vs = 0
or ω = 0.
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Free-surface elevation and flow pressure

Expressions (1.16a) and (1.22) determine the free-surface elevation ZF as

g ZF = Re [VsΦX + iωΦ−P F/ρw ] e− iωT . (1.26a)

The dynamic component of the pressure is defined by (1.18) and (1.22) as

Pd /ρw ≡ (P −Patm)/ρw + gZ = Re [VsΦX + iωΦ] e− iωT . (1.26b)

The hydrostatic component gZ does not contribute to the dynamic pressure
defined in (1.26b). The inconsequential time-growth parameter ν = +0 is
ignored in expressions (1.26).

1.4 Hull-surface boundary condition

The boundary condition at the hull surface ΣH of a ship or offshore structure
is now considered.

Ship that steadily advances in calm water

The position of a ship that advances at a constant speed Vs in calm water
is fixed (in the Galilean frame of reference that follows the ship) and the
flow-velocity component normal to the ship-hull surface ΣH is then nil. It
follows from (1.5) that one has

n ·∇Φ = Vs n
x at ΣH . (1.27)

The location of the hull surface ΣH is not known precisely a priori because
the flow, specifically the dynamic flow pressure distribution, around the ship
(especially at the hull bottom) causes the ship to experience a hydrodynamic
lift and pitch moment. As a result, the position of the ship is modified, i.e.
differs from the position of the ship at rest. Specifically, the ship experiences
a vertical displacement and a rotation, called sinkage and trim. [1,5]

Offshore structure in regular waves

For an offshore structure in ambient regular waves, one has Vs = 0 and the
flow velocity (1.5) becomes ∇Φ+∇Φa where ∇Φa denotes the flow velocity
associated with the ambient waves. The hull boundary condition for an
offshore structure that is fixed (not allowed to move) in waves is then

n ·∇Φ = −n ·∇Φa . (1.28)
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The flow around a freely-floating offshore structure ΣH that undergoes os-
cillatory motions about a mean position ΣH0 is classically decomposed into
a ‘diffraction problem’, which corresponds to the hull boundary condition
(1.28) for the offshore structure in its mean location ΣH0 , and 6 ‘radiation
problems’ associated with canonical oscillatory motions (surge, sway, heave,
roll, pitch, yaw) of ΣH about its mean position ΣH0 . The hull-surface bound-
ary conditions for these radiation problems are of the form

n ·∇Φ = n ·VH at ΣH (1.29)

where VH is the velocity of the hull surface ΣH . The boundary condition
(1.29) is enforced at the mean position ΣH0 of the offshore structure. [1,6]

Ship that steadily advances through regular waves

The flow around a ship that steadily advances through regular waves can be
expressed as the sum of a steady flow component that corresponds to the
flow around the ship advancing in calm water, for which the hull boundary
condition is (1.27), and a time-harmonic component that can be decomposed
into a diffraction-problem and six radiation-problems for which the hull
boundary conditions (applied at the mean position of the ship) are of the
form (1.28) and (1.29).

1.5 Nondimensional formulation

Nondimensionalization

Nondimensional coordinates x, time t, flow velocity ∇φ, potential φ and
dynamic pressure pd are defined in terms of a reference length Lr , the
acceleration of gravity g and the water density ρw as

x ≡ X

Lr
, t ≡ T

√
g

Lr
, ∇φ ≡ ∇Φ√

gLr
, φ ≡ Φ/Lr√

gLr
, pd ≡

Pd
ρw gLr

. (1.30a)

Nondimensional water depth d, free-surface elevation zF , hull velocity vH ,
and free-surface flux qF and pressure pF are similarly defined as

d ≡ D

Lr
, zF ≡ ZF

Lr
, vH ≡ VH

√
gLr

, qF ≡ QF

√
gLr

, pF ≡ P F

ρw gLr
. (1.30b)

The wavelength Λ and wavenumbers K, Kx, Ky are nondimensionalized as

λ ≡ Λ/Lr and (k, α, β) ≡ (K,Kx,Ky)Lr . (1.30c)
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In the particular case of a ship that steadily advances in calm water, the
ship speed Vs is often used instead of

√
gLr as reference velocity. One has

∇Φ

Vs
=
∇φ
F

and
Φ

LrVs
=
φ

F
(1.31)

where F is the Froude number defined in (1.32).

The Froude number F, the nondimensional frequency f, and the related
nondimensional parameters τ ≡ Ff and S ≡ F/f are defined as

F ≡ Vs√
gLr

, f ≡ ω
√
Lr
g

, τ ≡ Ff ≡ Vs ω

g
, S ≡ F

f
≡ Vs
ωLr

(1.32)

where S is the inverse of the usual Strouhal number. The nondimensional
time-growth parameter ε is defined as

ε ≡ ν
√
Lr/g .

The analysis given further on shows that the waves created by an off-
shore structure are conveniently analyzed in terms of the nondimensional
‘frequency-scaled’ coordinates and Fourier variables

xω ≡ f2 x ≡ ω2X

g
and (αω, βω, kω) ≡ (α, β, k)

f2
≡ g

ω2
(Kx,Ky,K) (1.33a)

associated with the choice of reference length Lr ≡ g/ω2.

It is also shown further on that the waves created by a ship advancing
at a constant speed Vs in calm water are conveniently analyzed in terms of
the nondimensional ‘speed-scaled’ coordinates and Fourier variables

xV ≡ x

F 2
≡ gX

V 2
s

and (αV, βV, kV ) ≡ F 2(α, β, k) ≡ V 2
s

g
(Kx,Ky,K) (1.33b)

associated with the reference length Lr ≡ V 2
s /g .

Lastly, the nondimensional coordinates and Fourier variables

xS≡ x

S
≡ ωX

Vs
and (αS, βS, kS) ≡ S(α, β, k) ≡ Vs

ω
(Kx,Ky,K) (1.33c)

are shown further on to be well suited to analyze the flow around a ship
that steadily advances through regular waves in the regime 0.3 < τ . These
nondimensional coordinates and Fourier variables are associated with the
reference length Lr ≡ Vs/ω .

The reference lengths Lr that correspond to the three alternative scalings
(1.33) are related to the free waves created by a ship or an offshore structure.
Accordingly, these three reference lengths are independent of the length
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Ls that characterizes the size of the ship or the structure, which has no
significant influence on the wavelength of far-field free waves. However, the
reference length Lr in expressions (1.30)-(1.32) is commonly taken as the
length Ls that characterizes the size of the ship or structure to analyze
near-field flows around ships or offshore structures.

Nondimensional boundary-value problems

The nondimensional flow potential that corresponds to the flow potential
(1.22) can be expressed as

φ̂(x, t) = Re φ(x) e (ε− i f ) t . (1.34)

The relations (1.20), (1.25), (1.27)-(1.29) then show that the spatial com-

ponent φ(x) of the potential φ̂(x, t) in (1.34) satisfies the Laplace equation

∇2
x φ ≡ ∂ 2

x φ+ ∂2
y φ+ ∂2

z φ = 0 in D , (1.35a)

the far-field condition
φ→ 0 as x→∞ , (1.35b)

the sea-bottom condition

∂zφ = 0 at z = −d , (1.35c)

the free-surface boundary condition

∂zφ+ (F ∂x + if− ε)2φ = (F ∂x + if )pF− qF at ΣF (1.35d)

where ε = +0, and the hull boundary condition

∇φ · n = qH at ΣH where (1.35e)

qH ≡
{

F nx

−n ·∇φa or n · vH
}

if

{
f = 0

f 6= 0

}
. (1.36)

The boundary-value problem defined by the Laplace equation (1.35a)
and the boundary conditions (1.35b-e) is considered hereafter for a general
but presumed known flux qH in the boundary condition (1.35e) and for
general, also presumed known, pressure pF and flux qF in the boundary
condition (1.35d) at the free surface.

The three general boundary-value problems, formulated in nondimen-
sional form in accordance with the nondimensionalization (1.30), that de-
termine the flow potential (1.34) associated with diffraction-radiation by an
offshore structure in regular waves or the flow around a ship that steadily
advances in calm water or through regular waves are defined by (1.35).
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The corresponding free-surface elevation and flow pressure are now con-
sidered. The free-surface elevation zF is determined by (1.26a) as

zF = Re (F φx + ifφ− pF ) e−if t where x ∈ ΣF (1.37a)

and φ and φx are evaluated at the plane z = 0 of the undisturbed free
surface. Expression (1.26b) for the dynamic flow pressure similarly yields

pd = Re (F φx + ifφ) e−if t where x ∈ D . (1.37b)

Expressions (1.37a-b) explicitly determine the nondimensional free-surface
elevation zF and the dynamic pressure pd in terms of the flow potential φ
(at the undisturbed free surface ΣF or in the mean flow domain D) that is
given by the solution of the boundary-value problem (1.35).
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Chapter 2

Basic and generalized
elementary free waves

This chapter considers the boundary-value problem (1.35) that determines
the spatial component φ(x) of the flow potential

φ̂(x, t) = Re φ(x) e (ε− i f )t (2.1)

associated with an offshore structure in regular waves or a ship that advances
through regular waves or (if f = 0) in calm water at a large distance from
the ship or structure, i.e. in the far field where the flow predominantly
consists of free waves that propagate with little influence from the ship or
structure.

Basic elementary wave functions that satisfy the Laplace equation
(1.35a) and the boundary conditions (1.35c-d) at the sea bottom and at the
free surface are obtained for ε taken as ε = 0 in (2.1) and (1.35d). These
elementary waves are subsequently modified to satisfy the initial conditions
consistent with ε taken as ε = +0 in (2.1) and the far-field condition (1.35b),
in addition to the Laplace equation and the boundary conditions at the sea
bottom and at the free surface already satisfied by the basic elementary
waves that correspond to ε = 0. This two-step analysis, in which the cases
ε = 0 or ε = +0 are successively considered, clearly illustrates the crucial
role of the initial conditions associated with the time-growth parameter ε
in (2.1) and (1.35d). [2,1]

The second step of the two-step analysis expounded in this chapter shows
that far-field waves can be expressed as a linear superposition of elementary
plane waves that are consistent with initial conditions associated with a flow
that starts from rest and satisfies the Laplace equation (2.3a), the far-field
boundary condition (2.3b), the sea-bottom boundary condition (2.3c) and
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the free-surface boundary condition (2.3d) with ε = +0.

2.1 Near-field flow and free waves

The flow created by an offshore structure in regular waves, or a ship that
advances in calm water or through waves, can be decomposed into a local
flow and waves. The local-flow component in this fundamental flow decom-
position vanishes rapidly away from the body (ship or offshore structure).
Specifically, the flow velocity ∇φL that corresponds to the local-flow com-
ponent decays as 1/h3 as h → ∞, where h ≡

√
x2 + y2 is the horizontal

distance from the body [2,2]. However, the flow velocity ∇φW associated
with the waves created by the body decays at a much slower rate than
the local-flow velocity ∇φL. Specifically, basic considerations of the energy
transported by the waves created by the body [2,3] show that ∇φW vanishes
as 1/

√
h . One then has

∇φW ∼ 1/
√
h and ∇φL∼ 1/h3 as h ≡

√
x2 + y2 →∞ . (2.2)

At some distance from a ship or offshore structure, the local-flow velocity
∇φL is then negligible in comparison to the wave component ∇φW, and the
waves created by the body (ship or structure) propagate ‘freely’ under little
influence from the body, which mostly determines the initial amplitude of
the waves. Indeed, the near-field boundary condition at the body surface
determines the initial amplitude of the waves created by the body, but has
no appreciable influence—except in a small near-field region in the vicinity
of the body—on the propagation of the waves away from the body that
created them. Accordingly, the waves at some distance from a body are
commonly called ‘free waves’.

Thus, the flow potential φ(x) associated with far-field free waves satisfies
the Laplace equation

∇2
x φ ≡ (∂ 2

x + ∂2
y + ∂2

z )φ = 0 in − d < z < 0 , (2.3a)

the far-field condition
φ→ 0 as x→∞ , (2.3b)

the sea-bottom condition

∂zφ = 0 at z = −d , (2.3c)

and the free-surface boundary condition

∂zφ+ (F ∂x + if− ε)2φ = 0 at z = 0 where ε = +0 . (2.3d)

The near-field free-surface pressure pF and flux qF in (1.35d) are ignored in
(2.3d) because they are assumed to be nil except (eventually) in the vicinity
of the body. Similarly, the hull boundary condition (1.35e) is ignored in the
far-field analysis considered in this chapter.
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2.2 Elementary waves and
dispersion relations

An essential property of the incomplete boundary-value problem, called
‘far-field boundary-value problem’ for convenience hereafter, defined by the
Laplace equation (2.3a) and the three boundary conditions (2.3b-d) is that
these homogeneous equations have nontrivial solutions, i.e. eigensolutions.
These eigensolutions, which correspond to elementary waves, are considered
first for the special case when the time-growth parameter ε in the free-
surface boundary condition (2.3d) is taken as ε = 0. The case ε = +0 is
subsequently considered in sections 2.8–2.10.

Laplace’s equation, sea-bottom and free-surface conditions

The far-field boundary condition (2.3b), although relevant for a far-field
study, is ignored at this stage of the analysis, which considers elementary
wave functions that satisfy the Laplace equation (2.3a), the sea-bottom
condition (2.3c) and the free-surface condition (2.3d) with ε = 0, i.e.

∇2
x φ ≡ (∂ 2

x + ∂2
y + ∂2

z )φ = 0 in − d < z < 0 , (2.4a)

∂zφ = 0 at z = −d , (2.4b)

∂zφ+ (F ∂x + if )2φ = 0 at z = 0 . (2.4c)

Elementary wave solutions and dispersion relations

The wave function

W(x) = e i (αx+β y) cosh[k (z+ d)]/cosh(kd) (2.5)

satisfies the sea-bottom condition (2.4b) and the Laplace equation (2.4a) if

k =
√
α2+β2 . (2.6)

The wave function (2.5) also satisfies the free-surface condition (2.4c) if

∆(f, α, β ;F, d) ≡ (f+Fα)2−k tanh(kd) = 0 . (2.7)

The relation ∆ = 0 is called dispersion relation, and the related function
∆(f, α, β ;F, d) is the dispersion function, for the waves created by a ship
that steadily advances through regular waves in water of uniform finite
depth.
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In the deep-water limit d =∞, the elementary wave function (2.5) and
the dispersion relation (2.7) become

W (x) = e i (αx+β y)+kz where k ≡
√
α2+β2 (2.8)

and ∆(f, α, β ;F ) ≡ (f+Fα)2−k = 0 . (2.9)

The deep-water dispersion relation (2.9) is significantly simpler than the
dispersion relation (2.7) for finite water-depth, which involves a hyperbolic
function and the additional parameter d that defines the water-depth.

The dispersion relations (2.7) and (2.9) define curves in the Fourier plane
(α, β). These curves are called dispersion curves. E.g., in the particularly
simple case of diffraction-radiation of regular waves by an offshore structure,
the dispersion relation (2.7) becomes

∆(f, α, β ; d) ≡ f2−k tanh(kd) = 0 . (2.10)

This dispersion relation has a single root and therefore defines a single
dispersion curve, a circle centered at the origin of the Fourier plane (α, β).

The dispersion function ∆(f, α, β ;F, d) and the related dispersion rela-
tion and dispersion curves ∆ = 0 are essential elements of potential flows
around ships and offshore structures. The term Fα in the dispersion re-
lations (2.7) and (2.9) stems from the fact that the flow is observed from
a Galilean frame of reference that advances at a (nondimensional) speed
F in the direction of the positive x axis. In a ‘sea-fixed’ frame of refer-
ence (xsea , ysea , zsea), one has F = 0 in (2.7), and this dispersion relation
becomes

∆sea(fsea , α, β ; d) ≡ f2
sea−k tanh(kd) = 0 (2.11)

in agreement with (2.10).

Expressions (2.1) and (2.5) define the flow potential associated with the
elementary wave function W (x) as

φ̂(x , t) =
cosh[k (z+ d)]

cosh(kd)
cos θ t where θt≡ αx+ βy − f t . (2.12)

Notations

The notations

h ≡
√
x2+ y2 , h ≡ (x, y) ≡ h(cosψ, sinψ) , ∇h ≡ (∂x , ∂y) , (2.13a)

k ≡
√
α2+β2 , k ≡ (α, β) ≡ k (cosγ, sinγ) , ∇k ≡ (∂α , ∂β ) , (2.13b)

θ ≡ αx+βy ≡ k ·h ≡ k h cos(γ− ψ) and (2.13c)

∂k ≡ (α/k) ∂α + (β/k) ∂β = (cosγ) ∂α + (sinγ) ∂β (2.13d)
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are used hereafter. The wavenumbers k, α and β are nondimensional in
accordance with (1.30c). The differential operator ∂k defined by (2.13d)
denotes differentiation along the radial direction (α,β)/k.

Encounter wave frequency

In a ‘sea-fixed’ frame of reference (xsea , ysea , zsea) where

xsea ≡ x+F t , ysea ≡ y and zsea ≡ z , (2.14)

the phase θ t in expression (2.12) for the potential of an elementary wave
observed from a moving frame of reference is given by

θ tsea = αxsea + β ysea −fsea t = α(x+F t) + βy −fsea t
= αx+ βy − (fsea−Fα)t = αx+ βy −ft

where fsea denotes the wave frequency in the sea-fixed reference frame.

Thus, a wave frequency fsea in the sea-fixed reference frame corresponds
to the encounter frequency

f= fsea−Fα = fsea−Fk cosγ (2.15)

in the moving frame of reference considered in (2.12). The relation (2.15)
yields f = fsea if γ = ±90◦ (beam seas), f < fsea if −90◦ < γ < 90◦

(following seas) and fsea <f if 90◦< γ < 270◦ (head seas). In the particular
case of a ship that advances at a constant speed in calm water, one has f = 0
and expression (2.15) yields

fsea =F k cosγ .

Phase velocity

Expression (2.12) for θt and the relations (2.13) yield

θt = k · h− f t and dθt/dt = k · dh/dt−f .

It follows that an observer traveling at the velocity dh/dt = vp given by

vp = vp
k

k
=
f

k

k

k
=
f

k

{
cosγ

sinγ

}
(2.16)

sees a constant value of the phase θt, e.g. a particular wave crest. The
velocity vp defined by (2.16) is then called the ‘phase velocity’.
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Thus, a wave crest, or more generally a constant-phase line associated
with a given value of the phase θt, advances along the normal to the wave-
crest line, i.e. in the direction

∇h θ
t = (∂x θ

t, ∂y θ
t) = (α, β) ≡ k (cosγ, sinγ) ≡ k ,

at a velocity

vp ≡ vp (cosγ, sinγ) ≡ vp k/k with vp = f/k .

In the particular case of a ship that advances at a constant speed in calm
water, one has f = 0 and expression (2.16) yields vp = 0, in accordance
with the fact that the waves created by the ship appear steady (frozen) in
a Galilean frame of reference that follows the ship.

In a sea-fixed frame of reference, expression (2.16) becomes

vseap = vseap
k

k
=
fsea
k

k

k
(2.17)

where fsea and k are related via the dispersion relation (2.11).

Alternative representations of dispersion relations

The dispersion relation (2.7) means that the wave frequency f and the
wavenumbers α and β of waves created by a ship that advances at a given
(nondimensional) speed F in water of uniform finite depth d are related.
The relationship between the frequency f and the wavenumbers α and β,
the Froude number F and the water depth d can be expressed via an implicit
equation

∆(f, α, β ;F, d) = 0 with k =
√
α2 +β2 , (2.18a)

as in (2.7). Alternatively, this dispersion relation can be used to determine
the frequency f in terms of the wavenumbers α and β, the Foude number
F and the water depth d via an explicit equation

f = f (α, β ;F, d) where k =
√
α2 +β2 . (2.18b)

The alternative ‘implicit’ or ‘explicit’ forms (2.18a) and (2.18b) of the
dispersion relation yield

∆f df + ∆α dα+ ∆β dβ = 0 or df = fα dα+fβ dβ . (2.19)

The two differential relations (2.19) yield

(∆α + ∆f fα) dα + (∆β + ∆f fβ ) dβ = 0 .

This differential relation yields the relations

fα = −∆α/∆f and fβ = −∆β/∆f . (2.20)
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The notation

∇k∆ ≡ (∆α ,∆β ) ≡ −‖∇k∆‖(cosδ, sinδ) (2.21a)

where ‖∇k∆‖ ≡
√

∆2
α + ∆2

β (2.21b)

is used further on. The vector ∇k∆ is orthogonal to a dispersion curve
∆ = 0, and δ denotes the angle between the vector −∇k∆ and the axis
β = 0 in the Fourier plane (α, β). Expressions (2.21a) and (2.13b) yield

|∆k |
‖∇k ∆‖ ≡

|α∆α + β∆β |/k√
∆2
α + ∆2

β

= | cos(γ − δ)| . (2.22)

This relation is used further on.

2.3 Group velocity

The wave function W defined by (2.5), where k is given by (2.6) and the
wavenumbers α and β satisfy the dispersion relation (2.7), is an elemen-
tary solution that satisfies the Laplace equation (2.4a) and the boundary
conditions (2.4b) and (2.4c) at the sea bottom and the free surface. The
flow potential φW given by a superposition of elementary wave functions
W also satisfies the homogeneous equations (2.4). An interesting special
superposition of two elementary wave potentials (2.12) is now considered.

Specifically, these two elementary waves have frequencies f and f + δf,
and wavenumbers (α, β) and (α + δα, β + δβ), where the differences δf,
δα and δβ are small. The related wavenumbers k and k + δk are given by
k ≡

√
α2 +β2 and δk ≈ (α δα+ β δβ)/k. The amplitudes of the two waves

are denoted as a and a′, where a′ can be equal to a or can differ from a.

At the free-surface plane z = 0, expression (2.12) shows that the poten-
tial of these two superposed elementary waves is given by

aRe e i θt+ a′Re e i (θt+δθt) = aReme i θt where (2.23a)

m ≡ 1+ (a′/a) e i δθt and δθt≡ x δα+ y δβ − t δf . (2.23b)

The potential (2.23a) corresponds to a wave aReme i θt with a modu-
lated complex amplitude ma. Expressions (2.23b) show that the modula-
tion factor m is also a wave, with frequency δf and wavenumbers (δα, δβ).
Expressions (2.23b) and (2.19) yield

d δθt

dt
= δα

dx

dt
+ δβ

dy

dt
− δf = δα

(
dx

dt
− ∂f

∂α

)
+ δβ

(
dy

dt
− ∂f

∂β

)
.
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An observer advancing at the velocity vg = (vxg , v
y
g ) where

vxg ≡ dx/dt = fα and vyg ≡ dy/dt = fβ (2.24)

observes a constant value of the modulation factor m, i.e. advances at the
velocity—called group velocity—of the group of modulated waves defined
by (2.23), and observes waves that have the same amplitude.

Since the energy transported by a wave is proportional to the square a2

of the wave amplitude a, an observer advancing at the group velocity vg
observes the same wave energy, which is then transported at a velocity that
is equal to the group velocity. Thus, the velocity ve at which wave energy
is transported is equal to the group velocity vg , an important basic result
of the theory of water waves.

The relations (2.24), (2.13b), (2.20) and (2.21a) yield the alternative
expressions

vg ≡
{
vxg

vyg

}
=

{
fα

fβ

}
≡∇k f =

−1

∆f

{
∆α

∆β

}
≡ ∇k∆

−∆f
(2.25a)

for the group velocity vg . The vector ∇k∆ associated with a dispersion
function ∆ is orthogonal to a dispersion curve ∆ = 0. Thus, expressions
(2.25a) show that the group velocity vg at a point (α, β) of a dispersion
curve is orthogonal to the dispersion curve. Expressions (2.25a) show that
the magnitude vg of the group velocity vg is given by

vg ≡
√

(vxg )2 +(vyg )2 =
‖∇k∆‖
|∆f |

≡

√
∆2
α + ∆2

β

|∆f |
. (2.25b)

Expressions (2.25a-b) then yield

vg
vg

= sign(∆f)
−∇k∆

‖∇k∆‖ . (2.25c)

The relations (2.25a-c) explicitly determine the group velocity vg in terms
of the dispersion function ∆. Expressions (2.25c) and (2.21) also yield

vg ≡
{
vxg

vyg

}
= sign(∆f) vg

{
cosδ

sinδ

}
(2.25d)

This relation shows that the angle between the group velocity vg and the
axis β = 0 is δ or δ + π if 0 < ∆f or ∆f < 0.

In a sea-fixed frame of reference, expression (2.25a) becomes

vseag =
∇k∆sea

−∆sea
f

(2.26)

where ∆sea is the dispersion relation (2.11).
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2.4 Dispersion functions

The dispersion function ∆(f, α, β ;F, d) related to the free waves created
by a ship that steadily advances through regular waves in water of uniform
finite depth is now considered.

The derivatives of the dispersion function ∆(f, α, β ;F, d) given by (2.7)
with respect to the wave frequency f and the wavenumbers α and β are

∆f = 2(f+Fα) (2.27a)

∆α = 2F (f+Fα)− [tanh(kd) + kd/cosh2(kd)]α/k ,

∆β = − [tanh(kd) + kd/cosh2(kd)]β/k .

The alternative expressions

∆α = 2F (f+Fα)− (1+ sd) tanh(kd)α/k and (2.27b)

∆β = −(1+ sd)tanh(kd)β/k (2.27c)

follow from the identity

tanh(kd) + (kd)/cosh2(kd) ≡ (1+ sd) tanh(kd) ≡ td (2.28a)

where sd and td are defined as

sd ≡ (2kd)/sinh(2kd) and td ≡ (1+ sd) tanh(kd) . (2.28b)

One has 0 ≤ td ≤ 1 and 0 ≤ sd ≤ 1 as kd increases within the range
0 ≤ kd ≤ ∞.

The derivative of the dispersion function ∆(f, α, β ;F, d) in the radial
direction (α, β)/k is given by

∆k ≡ (α/k) ∆α + (β/k) ∆β = ∆α cosγ + ∆β sinγ (2.29)

in accordance with (2.13d). Expressions (2.29), (2.27b-c) and (2.6) then
yield

∆k = 2F (f+Fα)α/k − (1+ sd) tanh(kd) . (2.30)

Particular cases

Expressions (2.27), (2.30), (2.13b) and (2.28b) yield

∆f = 2f and


∆α

∆β

∆k

= −


cosγ

sinγ

1

 td if F = 0 (2.31a)
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i.e. for an offshore structure in regular waves,
∆f = 2Fα = 2Fk cosγ

∆α = (2F 2k − td)α/k = (2F 2k − td) cosγ

∆β = − tdβ/k = − td sinγ

∆k = 2F 2α2/k − td = 2F 2k cos2γ − td

 if f = 0 (2.31b)

i.e. for a ship that steadily advances in calm water, and
∆f = 2(f+Fα) = 2(f+Fk cosγ)

∆α = 2F (f+Fα)− α/k = 2F (f+Fk cosγ)−cosγ

∆β = −β/k = − sinγ

∆k = 2F (f+Fα)α/k −1 = 2F (f+Fk cosγ) cosγ −1

 if d =∞ (2.31c)

i.e. in deep water, for which expression (2.28b) yields sd = 0 and td = 1.

In a sea-fixed frame of reference, it readily follows from (2.10) and (2.11)
that expressions (2.31a) become

∆sea
f = 2fsea and


∆sea
α

∆sea
β

∆sea
k

= −


cosγ

sinγ

1

 td (2.32)

where the dispersion relation ∆sea is given by (2.11).

2.5 Phase and group velocities

The expressions for the derivatives of the dispersion function ∆(f, α, β ;F, d)
given in the previous section can readily be applied to determine the group
velocity vg and the phase velocity vp of the waves created by a ship that
steadily advances through regular waves in water of uniform finite depth.

Expressions (2.25a), (2.27) and (2.7) show that vg is given by

vg ≡
{
vxg

vyg

}
= sign(f+Fα)

1+ sd

2

√
tanh(kd)

k

{
cosγ

sinγ

}
−
{
F

0

}
(2.33a)

where (cosγ, sinγ) = k/k and sd is given by (2.28b). The component (−F, 0)
on the right of (2.33a) stems from the fact that the flow is observed from a
Galilean frame of reference that advances at a (nondimensional) speed F in
the direction of the positive x axis. Expressions (2.16) and (2.7) yield

vp ≡
{
vxp
vyp

}
=

(
sign(f+Fα)

√
tanh(kd)

k
−F cosγ

){
cosγ

sinγ

}
(2.33b)
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Figure 2.1: Function vgp (kd) defined by (2.34b) for 0 ≤ kd ≤ 3.

The group velocity vg and the phase velocity vp are not colinear except if
F = 0 , i.e. for diffraction-radiation of regular waves by an offshore structure.

In this special case, expressions (2.33) become

vp =

√
tanh(kd)

k

{
cosγ

sinγ

}
and vg = vgp vp (2.34a)

where vgp ≡
1+ sd

2
=

1

2

[
1+

2kd

sinh(2kd)

]
(2.34b)

and (2.28b) was used. Expression (2.34b) yields

1/2 ≤ vgp ≤ 1 with vgp → 1/2 as kd→∞ and vgp → 1 as kd→ 0 .

The function vgp defined by (2.34b) is depicted in Fig.2.1 for 0 ≤ kd ≤ 3. For
diffraction-radiation of regular waves by offshore structures in deep water,
i.e. for F = 0 and d =∞, one has sd = 0 in (2.33a) and expressions (2.34)
yield

vp = (cosγ, sinγ)/
√
k and vg = vp/2 . (2.35)

In a sea-fixed frame of reference, the group velocity vseag and the phase
velocity vseap are colinear, in agreement with (2.34a). Specifically, one has

vseap = sign(fsea)

√
tanh(kd)

k

k

k
and vseag = vgp vseap (2.36)

where vgp is given by (2.34b).
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Figure 2.2: Functions 1/kω and tanh(dωkω) for dω = 3, 1 or 0.3.

In the general case F 6= 0, expressions (2.33a) and (2.36) show that
the group velocity vg can be expressed as the sum of the apparent uniform
current (−F, 0) associated with the moving Galilean frame of reference and
the group velocity vseag in a sea-fixed frame of reference, i.e. one has

vseag = vg + vship where vship ≡ (F, 0) (2.37)

is the ship speed. The basic relation (2.37) between velocities observed in
different Galilean frames of reference does not hold for the phase velocity
vp . Specifically, one has

vseap = vp +F (cosγ) k/k

Thus, one has vseap 6= vp + vship in accordance with the fact that the phase
velocity is fundamentally different from a flow velocity.

2.6 Offshore structures in regular waves

Diffraction-radiation of regular waves by an offshore structure in water of
uniform finite depth d is now considered. The dispersion relation (2.10) can
be expressed in the ‘frequency-scaled’ form

1

kω
= tanh(dωkω) where kω ≡ k

f2
≡ gK

ω2
and dω ≡ f2d ≡ ω2D

g
(2.38)

in accordance with (1.33a).
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Figure 2.3: Root of the dispersion relation (2.38) and related deep-water
and shallow-water approximations (2.39b) for 0 ≤ dω ≤ 4.

Fig.2.2 shows that the dispersion equation (2.38) has a single real root,
denoted as kω∗ (dω), and therefore defines a single dispersion curve for every
value of dω. This dispersion curve is the circle

kω = kω∗ (dω) (2.39a)

centered at the origin of the Fourier plane. The root kω∗ (dω) of (2.38) is
depicted in Fig.2.3, where the deep-water and shallow-water approximations

kω∗ ∼ 1 as dω→∞ and kω∗ ∼
1+ (1+11dω/60)dω/6√

dω
as dω→ 0 (2.39b)

are also shown.

The dispersion relation (2.38) yields

1/kω∗ (dω) = tanh[dωkω∗ (dω)]≤ 1 .

One then has
1 = kω∗ (∞) ≤ kω∗ (d) . (2.40a)

The corresponding wavelength λω ≡ 2π/kω is given by

λω ≡ f2λ ≡ ω2Λ

g
=

2π

kω∗ (d)
≤ 2π

kω∗ (∞)
= λω∞ = 2π . (2.40b)

Thus, for a given wave frequency f , the wavelength λω decreases as the water
depth d decreases, i.e. time-harmonic waves are shorter in finite water depth
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Figure 2.4: Phase and group velocities vωp and vωg given by (2.41) for
diffraction-radiation of regular waves by an offshore structure in water of
uniform depth 0 ≤ dω≤ 4.

than in deep water. The relations (2.40b) yield

Λ ≤ Λdeep≡ 2πg/ω2 . (2.40c)

Expression (2.40c) for the deep-water wavelength Λdeep shows that Λdeep

is smaller than a characteristic length Ls related to the size of an offshore
structure if

ω
√
Ls/g >

√
2π ≈ 2.5 or

√
Ls/g/Tω > 1/

√
2π ≈ 0.4

where Tω ≡ 2π/ω denotes the wave period.

As was already noted, expressions (2.33) with F = 0 show that the phase
velocity vp and the group velocity vg are colinear, with magnitude given by

vωp =

√
tanh(dωkω∗ )

kω∗
and vωg =

1

2

[
1+

2 dωkω∗
sinh(2 dωkω∗ )

]
vωp (2.41)

where vω ≡ V ω/g and kω∗ (dω) is the root of the dispersion relation (2.38).
Expressions (2.41) yield vωg ∼ vωp /2 in the deep-water limit dωkω→∞, and
vωg ∼ vωp in the shallow-water limit dωkω→ 0, as can be observed in Fig.2.4
where the phase velocity vωp and the group velocity vωg given by (2.41) are
depicted.

As was also noted previously, the dispersion relation (2.38) defines a
single dispersion curve, a circle centered at the origin k = 0 of the Fourier
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Figure 2.5: The figure illustrates—for the simplest case of diffraction-
radiation of regular waves by an offshore structure in deep water—the basic
properties that the group velocity vg is orthogonal to the dispersion curve
(the circle k = f2) in the Fourier plane (α, β), and the phase velocity vp
is orthogonal to the wave crests (a series of concentric circles) in the free
surface plane (x, y).

plane. Moreover, the corresponding waves (e.g. wave crests) are shown
further on (in section 3.5) to consist of a series of concentric circles centered
at the origin h = 0 of the (physical) free-surface plane z = 0. Thus, the
group velocity vg = vgk/k is orthogonal to the dispersion circle in the
Fourier plane (α, β) and the phase velocity vp = vph/h is orthogonal to the
circular waves in the free-surface plane (x, y), as is illustrated in Fig.2.5 for
deep water.

2.7 Superposition of basic elementary waves

As was already noted in section 2.3, the flow potential φW associated with
a superposition of elementary plane wave functions W along the dispersion
curves defined by the dispersion relation ∆(f, α, β ;F, d) = 0 , i.e.

φW(x) =
∑
∆=0

∫
∆=0

ds aφW(x, α, β) where (α, β)∈(∆ = 0) , (2.42)

satisfies the Laplace equation (2.4a) and the boundary conditions (2.4b) and
(2.4c) at the sea bottom and the free surface. In (2.42), the summation is
performed over all the dispersion curves, the point (α , β) lies on a dispersion
curve, and W(x, α, β) is the elementary wave function (2.5). Furthermore,
ds ≡

√
(dα)2 + (dβ)2 denotes the (nondimensional) differential element of

arc length of a dispersion curve and aφ represents a general wave-amplitude
function. Expression (2.42) assumes that the dispersion curves are defined
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in terms of parametric representations in which the arc length s is taken
as the parameter, although alternative parametric representations of the
dispersion curves can be used.

Thus, free waves and the corresponding flow potential φW(x) in (2.1)
can be represented as a one-dimensional Fourier superposition of elementary
plane waves, defined by the wave function W, along the dispersion curves
determined by the dispersion relation ∆(f, α, β ;F, d) = 0. However, the
elementary wave function W in the Fourier superposition (2.42) corresponds
to ε ≡ 0 in (2.3d). It follows that the elementary wave function W defined
by (2.5), and the related Fourier superposition (2.42), do not account for
the initial conditions associated with the choices 0 < ε or ε = +0 in (2.1).

The Fourier superposition (2.42) is not a satisfactory representation of
free waves. For instance, this representation of free waves does not preclude
ship waves ahead of a ship that advances in calm water. A satisfactory flow
representation requires initial conditions, as in (2.1) with ε = +0. Alterna-
tively, ε could be taken as ε = 0 in (2.1) and (2.3d) if an additional condition,
commonly called ‘radiation condition’, is imposed [2,4]. A straightforward
analysis associated with ε = +0 and a flow that grows from rest at time
t = −∞ is used in the book, and a generalized elementary wave function
that accounts for initial conditions and the far-field boundary condition
(2.3b) is defined in sections 2.8−2.10.

Specifically, the spatial component φ(x) of the flow potential related
to the far-field boundary-value problem (2.3) for an offshore structure in
regular waves or a ship that steadily advances through regular waves or
(if f = 0) in calm water with the ‘time-growth’ parameter ε in the free-
surface boundary condition (2.3d) taken as ε = +0, instead of ε ≡ 0, is now
considered. The elementary wave function given by (2.5)-(2.7) is generalized
to satisfy initial conditions that correspond to a flow starting from rest at
time t = −∞, and the far-field condition (2.3b).

2.8 Initial conditions

Thus, elementary wave functions associated with 0 < ε in the free-surface
boundary condition (2.3d), or equivalently the ‘complex frequency’ f + i ε
in (2.1), are now considered.

These elementary waves can be determined by considering the complex
wavenumbers

α+ i ε α1 , β + i ε β1 , k + i ε k1 (2.43)

in the elementary wave function (2.5), which is then generalized as

e i (αx+β y)− ε (α1x+β1y) cosh[(k + i ε k1)(z+ d)]

cosh[(k + i ε k1)d ]
. (2.44)
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Sea-bottom boundary condition and Laplace’s equation

The elementary wave function (2.44) satisfies the sea-bottom condition
(2.3c), and also satisfies the Laplace equation (2.3a) if

(k + i εk1)2 = (α+ i εα1)2 + (β + i εβ1)2 . (2.45a)

This condition is satisfied exactly, not only for 0 < ε � 1 but for every
value of ε, if

k2 = α2 + β2 , k k1 = αα1 + β β1 and k2
1 = α2

1 + β2
1 . (2.45b)

The condition (2.45a) and the equivalent conditions (2.45b) are satisfied if
(α1 , β1 , k1) are proportional to (α, β, k), i.e. if

(α1 , β1 , k1) = (α, β, k)/µ (2.45c)

where µ denotes a proportionality factor.

Free-surface boundary condition

Furthermore, the elementary wave function (2.44) satisfies the free-surface
condition (2.3d) if

[f+ i ε+Fα(1+ i ε/µ)]2 = k (1+ i ε/µ) tanh[kd(1+ i ε/µ)] (2.46)

where the relations α1 = α/µ and k1 = k/µ were used in accordance with
(2.45c). The Taylor series of the free-surface boundary condition (2.46)
about ε = 0 yields

(f+Fα)2 + 2 i ε(f+Fα)(1+Fα/µ) = k tanh(kd) + i ε(1+ sd)k tanh(kd)/µ

where O(ε2) terms are ignored and expression (2.28a) was used on the right
side. The O(1) and O(i ε) terms in this expansion are

(f+Fα)2 = k tanh(kd) , (2.47)

2 (f+Fα)(1+Fα/µ) = (1+ sd)k tanh(kd)/µ .

The O(1) relation (2.47) is the dispersion relation (2.7) previously obtained
for ε ≡ 0, and the O(i ε) term determines the proportionality factor µ in
(2.45c) as

µ = (f+Fα)(1+ sd)/2−Fα (2.48)

where (2.47) was used and sd is given by (2.28b). Expressions (2.45c) and
(2.48) determine the complex wavenumbers α1 , β1 , k1 in (2.43).
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Alternative approach

Expression (2.48) can be obtained in another way, now considered. The
dispersion relation (2.46) corresponds to the limit ε → 0 of the dispersion
relation

∆(f+ i ε, α+ i ε α1 , β + i εβ1 ;F, d) = 0 (2.49)

associated with the dispersion relation ∆(f, α, β ;F, d) = 0 defined by (2.7)
and the complex frequency and wavenumbers (2.43) in the related wave
function (2.44). The Taylor series expansion of the dispersion relation (2.49)
about ε = 0 yields

∆(f, α, β ;F, d) + i ε (∆f + α1 ∆α + β1 ∆β) +O(ε2) = 0 . (2.50)

The O(1) relation (2.50) is the dispersion relation (2.7), already obtained
for ε ≡ 0, and the O(ε) term determines the proportionality factor µ in
(2.45c) as

µ = −(α∆α + β∆β )/∆f ≡ −k∆k/∆f (2.51a)

where ∆k is the derivative of the dispersion function ∆(f, α, β ;F, d) in the
radial direction (α, β)/k , as in (2.29). Expressions (2.27a), (2.30) and (2.7)
then yield

µ = −k∆k /∆f = (f+Fα)(1+ sd)/2 −Fα (2.51b)

in agreement with (2.48). The proportionality factor µ defined by (2.51b)
can be expressed as

µ = σ∆µ′ where µ′ ≡ |µ| = k |∆k |/|∆f | and (2.51c)

σ∆ ≡ −sign(∆f ∆k) (2.52)

This expression determines the sign function σ∆ in terms of the dispersion
function ∆ .

Application to ships and offshore structures

In particular, expression (2.52) yields

σ∆ = sign[(f+Fα)(1+ sd)/2−Fα ] (2.53a)

for a ship that steadily advances through regular waves in finite water-depth.
Expression (2.53a) becomes

σ∆ = 1 if F = 0 and σ∆ = −sign(α) = −sign(cosγ) if f = 0 , (2.53b)

i.e. for an offshore structure in regular waves or a ship that steadily advances
in calm water, and

σ∆ = sign(f−Fα) = sign(f/F − α) if d =∞ , (2.53c)

i.e. in deep water.
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2.9 Far-field boundary condition

The relations (2.44), (2.45c) and (2.51c) yield the elementary wave function

cosh[k (1+ σ∆ i ε/µ′)(z+ d)]

cosh[k (1+ σ∆ i ε/µ′)d ]
e i (αx+β y)−σ∆ ε (αx+β y)/µ′ . (2.54)

The elementary wave function (2.54) with 0 < ε � 1 and the dispersion
relation (2.7) was already shown to satisfy the Laplace equation (2.3a) and
the boundary conditions (2.3c) and (2.3d) at the sea bottom and the free
surface. The elementary wave function (2.54) vanishes in the far field if
0 < σ∆ sign(αx + βy) ≡ σ∆ sign(θ) in accordance with expression (2.13c)
for the phase θ.

The polar representations (2.13b) and (2.13a) for the Fourier variables
α and β and the horizontal coordinates x and y then show that bounded
elementary waves are obtained if σθ = σ∆, where σθ is defined as

σθ ≡ sign(θ) ≡ sign[cos(γ− ψ)] ≡ sign(αx+βy) . (2.55)

The condition σθ = σ∆ and expression (2.55) yield the restrictions{
ψ − π/2 < γ < ψ + π/2

ψ + π/2 < γ < ψ + 3π/2

}
if

{
0<σ∆

σ∆ < 0

}
. (2.56)

The condition (2.56) defines ‘active’ portions of the dispersion curves ∆ = 0
in the Fourier representation (2.42) of free waves. These active portions of
the dispersion curves in the Fourier plane (α, β) depend on the angle ψ
determined in the physical plane (x, y) by (2.13a).

2.10 Fourier representation of far-field waves
and generalized elementary waves

Alternatively, the Fourier representation (2.42) can be modified as

φW(x) =
∑
∆=0

∫
∆=0

ds aφH(σ∆σθ)W(x, α, β)

where (α, β)∈(∆ = 0) . (2.57a)

Moreover, σ∆ and σθ are defined by (2.53a) and (2.55) as

σ∆ ≡ −sign(∆f ∆k) = sign[(f+Fα)(1+ sd)/2−Fα ] , (2.57b)

σθ ≡ sign(θ) ≡ sign[cos(γ− ψ)] ≡ sign(αx+βy) . (2.57c)
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The summation in (2.57a) is performed over all the dispersion curves defined
by the dispersion relation ∆ = 0 and the point (α , β) lies on a dispersion
curve, as in (2.42). The Heaviside unit-step function H(σ∆σθ) in (2.57a)
takes the values

H(σ∆σθ ) =

{
1

0

}
if σ∆σθ =

{
1

−1

}
. (2.57d)

The elementary wave function W(x, α, β) can be expressed as

W(x, α, β) ≡ az e i (αx+β y) ≡ az e i θ (2.57e)

where the function az(kz, kd) is defined as

az ≡ cosh[k (z+ d)]

cosh(kd)
if d <∞ or az ≡ e kz if d =∞ (2.57f)

in accordance with (2.5) and (2.8).

The representation (2.42), where portions of the dispersion curves ∆ = 0
are eliminated in accordance with (2.56), and the representation (2.57a)
restrict the dispersion curves in equivalent ways. The Fourier superposition
(2.57a) of elementary waves satisfies the Laplace equation (2.3a), the far-
field boundary condition (2.3b) and the boundary conditions (2.3c) and
(2.3d) at the sea bottom and the free surface, and is consistent with the
potential (2.1) for a flow that starts from rest. Expression (2.57a) therefore
provides a satisfactory analytical representation of the free waves created
by a body (ship, offshore structure) at some distance from the body, unlike
the representation (2.42). In particular, the Fourier superposition (2.57a)
can be expected to yield correct far-field wave patterns.

Application to offshore structures in deep water

For purposes of illustration, the general Fourier superposition (2.57a) of
elementary free waves is now applied to diffraction-radiation of regular waves
by an offshore structure, i.e. for F = 0 , in deep water. The dispersion
relation (2.10) for this particularly simple case yields a single dispersion
curve: the circle k = f2. Expressions (2.53b) and (2.57c) yield

H(σ∆σθ ) = H(σθ ) = H [cos(γ− ψ)] . (2.58)

One then has H(σ∆σθ) = 0 for ψ+ π/2 < γ < ψ+ 3π/2 in agreement with
(2.56). Figure 2.6 shows the ‘active’ half ψ − π/2 < γ < ψ + π/2 and the
‘inert’ half ψ + π/2 < γ < ψ + 3π/2 of the dispersion circle k/f2 = 1 that
correspond to ψ = π/4 .
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Figure 2.6: ‘Active’ (solid line) and ‘inert’ (dashed line) halves of the dis-
persion circle k = f2 that correspond to the ray angle ψ = π/4 for wave
diffraction-radiation by an offshore structure in deep water. The two points
of stationary phase at γ = ψ and γ = ψ + π defined (in the next chapter)
by (3.8) are also marked. The waves in the direction ψ = π/4 mostly stem
from the dominant wave generator at γ = ψ = π/4, located at the center of
the active half of the dispersion circle.

Expressions (2.57a), (2.57e-f) and (2.13a-b) show that the free-wave po-
tential φW is given by

φW(f2z ,f2h, ψ) = e f
2z ϕW(f2h, ψ) where (2.59a)

ϕW(f2h, ψ) =

∫ ψ+π/2

ψ−π/2

dγ aφ(γ) e if2h cos(γ−ψ) . (2.59b)

This expression provides an analytical representation of the free waves cre-
ated by an offshore structure in deep water. The amplitude function aφ(γ)
in (2.59b), and in the general Fourier superposition (2.57a), can only be de-
termined if the near-field boundary condition (1.35e) is considered, as was
already noted. This near-field boundary condition is ignored in the analysis
of free waves related to the ‘far-field boundary-value problem’ (2.3).

Modified elementary free waves

The basic elementary wave function W (x, α, β) in (2.42) is modified as

W ∗(x, α, β) ≡ H(σ∆σθ ) az e i θ where θ ≡ αx+βy (2.60)

in (2.57a) where (α, β)∈(∆ = 0) and σ∆, σθ and az are given by (2.57b-c)
and (2.57f). Unlike the basic elementary wave function (2.5), the modified
wave function (2.60) corresponds to a flow that starts from rest and satisfies
the far-field boundary condition (2.3b).
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The origin (x = 0, y = 0) of the horizontal coordinates h ≡ (x, y) in
(2.13a) is arbitrary and can be chosen as (x = ξ, y = η). The phase function
θ in (2.13c), (2.57c) and (2.60) then becomes

θ = α(x−ξ) + β (y−η) . (2.61)

A set of elementary wave functions (2.60), with θ given by (2.61), associated
with a corresponding set of origins (ξp , ηp) taken as a set of near-field points
can be considered, and provides a basis for representing the free waves
generated by a ship or an offshore structure.

Thus, the free waves generated by a ship that advances (at a constant
speed along a straight path) through regular (time-harmonic) ambient waves
in water of uniform finite depth, can be expressed as a Fourier superposition
of the generalized elementary plane waves (2.60). This Fourier superposition
of elementary waves provides an analytical representation of the free waves
generated by a ship, at some distance away from the ship, that satisfies
the Laplace equation (2.3a), the far-field condition (2.3b) and the boundary
conditions (2.3c) and (2.3d) at the sea bottom and the free surface, and is
consistent with a flow that starts from rest.
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Chapter 3

Dispersion curves and
wave patterns

This chapter considers the Fourier superposition of modified elementary
waves, given in the previous chapter by (2.57), in the far field 1� h where

h ≡
√
x2 + y2 is the horizontal distance from a ship or offshore structure.

This far-field analysis of the representation (2.57) of free waves provides
relationships between the dispersion curves, defined in the Fourier plane
(α, β) by the dispersion relation, and the far-field waves generated by the
body (ship or offshore structure) in the physical space (x, y). In particular,
far-field wave patterns are determined in terms of the dispersion function
via simple explicit analytical relations. These relations, and much of the
analysis given in this chapter, hold not only for the waves created by a
ship or an offshore structure but more generally for a broad class of plane
dispersive waves.

3.1 Stationary phase and far-field waves

The general Fourier superposition (2.57) of elementary free waves is now

considered in the far field 1� h ≡
√
x2 + y2. The Fourier integral (2.57a)

is expressed as

φW(x) =
∑
∆=0

∫
∆=0

ds â e ihΘ (3.1a)

where â ≡ â(s) and Θ ≡ Θ(s) are functions of the arc length s along a
dispersion curve ∆ = 0.
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Figure 3.1: Functions AS1 (top) and AS2 (bottom) defined by expressions
(3.3) for −1 ≤ s− s0 ≤ 1. The function S2 has a point of stationary phase
at s = s0 .

The functions â and Θ are defined as

â ≡ H(σ∆σθ ) aφaz and Θ ≡ θ/h ≡ (αx+ βy)/h ≡ k cos(γ − ψ) (3.1b)

where θ is the phase function defined by (2.13c). The wavelength δs of the
oscillations of the trigonometric function e ihΘ in the wave integral (3.1a)
is determined by the relation h |Θ′(s)| δs = 2π where Θ′ ≡ dΘ(s)/ds is the
derivative of the phase function Θ(s) at a point s of the dispersion curve
∆ = 0 . One then has

δs =
2π

h |Θ′(s)| . (3.2)

This relation shows that the wavelength δs varies along the dispersion curve
∆ = 0 . Expression (3.2) also shows that the local wavelength δs becomes
smaller, and hence the trigonometric function e ihΘ oscillates more rapidly,
as h increases. The trigonometric function e ihΘ is then rapidly oscillatory
in the far field 1� h, except at a point s = s0 where Θ′(s) = 0, i.e. where
the phase Θ is stationary (does not change).

This property is illustrated in Fig.3.1, where the functions AS1 and AS2

38



defined as

A ≡ 1+
s− s0

2
, S1 ≡ sin[h(s − s0)] , S2 ≡ sin

(
h

(s − s0)2

2

)
(3.3)

are depicted for −1≤ s− s0 ≤ 1 and h = 150. The trigonometric functions
S1 and S2 respectively correspond to the phase functions

Θ1 ≡ s− s0 and Θ2 ≡ (s− s0)2/2

and the related derivatives

Θ′1 = 1 and Θ′2 = s− s0

in (3.1a) and (3.2). The amplitude function A varies slowly (linearly) within
the range 1/2 ≤ A ≤ 3/2 as s varies within the range −1 ≤ s − s0 ≤ 1.
The trigonometric function S1 oscillates rapidly within the entire range
−1 ≤ s − s0 ≤ 1. The trigonometric function S2 is also rapidly oscillatory
within that range, except in the vicinity of the point s = s0 , where Θ′2 = 0
and the phase Θ2 of S2 is stationary.

Fig.3.1 suggests that the rapidly oscillatory function AS1 only yields a
small contribution to the Fourier integral (3.1a) because the contributions
of the positive and negative values of AS1 largely cancel out. Fig.3.1 also
suggests that the main contribution of the function AS2 to the integral
(3.1a) stems from the vicinity of the point of stationary phase s = s0 ,
and that the function AS2 yields a larger contribution than the function
AS1 to the integral (3.1a). A mathematical verification of these intuitive
expectations is given in section 3.3.

3.2 Dispersion curves and far-field waves

Expression (3.1b) for the phase function Θ shows that a point of stationary
phase is defined by the equivalent relations

dΘ

ds
≡ dα

ds
cosψ +

dβ

ds
sinψ = 0 or

dθ

ds
≡ h dΘ

ds
≡ dα

ds
x+

dβ

ds
y = 0 , (3.4)

where ds ≡
√

(dα)2 + (dβ)2 is the differential element of arc length along
a dispersion curve. The vector (dα/ds, dβ/ds) is tangent to the dispersion
curve. It then follows from (3.4) that, at a point (α , β) of a dispersion curve
where dΘ/ds = 0, i.e. at a point of stationary phase, the vector h ≡ (x, y)
is normal to the dispersion curve and therefore is colinear with the vector
∇k∆ defined by (2.21). Thus, the stationary-phase relation (3.4) shows that
the relations

h

h
≡ (x, y)√

x2 + y2
=
ν (∆α ,∆β )√

∆2
α + ∆2

β

≡ ν∇k∆

‖∇k∆‖ where ν = ±1 (3.5)
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Figure 3.2: A point (α, β) of a dispersion curve (in the Fourier plane) where
the stationary-phase condition dΘ/ds = 0 is satisfied generates waves, in
the free-surface plane (x, y), in a direction h ≡ (x, y) that is orthogonal
to the dispersion curve and is colinear with, and oriented as, the group
velocity vg . Thus, the group velocity vg = vgh/h is aligned with the ray
that originates at the origin h = 0 (the wavemaker) of the free-surface
plane (x, y) and is orthogonal to the dispersion curve ∆ = 0 in the Fourier
plane (α, β). The phase velocity vp = vp k/k , aligned with the ray that
originates at the origin k = 0 of the Fourier plane (α, β), is orthogonal to
the constant-phase curves (e.g. wave crests and troughs) in the free-surface
plane (x, y) .

hold at a point (α, β) of a dispersion curve where dΘ/ds = 0 .

This stationary-phase relation and expressions (2.57c) and (2.29) yield

σθ ≡ sign(αx+βy) = ν sign(α∆α+β∆β) = ν sign(∆k) .

This relation and expression (2.57b) then yield

σ∆σθ = −ν sign(∆f) .

The function H(σ∆σθ) in (2.57a) shows that a point of stationary phase
only contributes to the Fourier integral (2.57a) if 0 < σ∆σθ, i.e. if

ν = −sign(∆f) .

At such a stationary-phase point, expressions (3.5) then become

h

h
=

(x, y)√
x2 + y2

= − sign(∆f)
(∆α ,∆β)√

∆2
α + ∆2

β

. (3.6)

The relations (3.6) and (2.25a) show that a point (α, β) of a dispersion
curve (in the Fourier plane) where dΘ/ds = 0 mostly generates waves (in the
physical space) in a direction h ≡ (x, y) that is orthogonal to the dispersion
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curve and is colinear with, and oriented as, the group velocity

vg ≡
{
vxg
vyg

}
=
−1

∆f

{
∆α

∆β

}
. (3.7)

Conversely, far-field waves observed in a direction h of the physical space
predominantly stem from a point (or possibly several points) of a dispersion
curve (or several dispersion curves) where the dispersion curve is orthogonal
to h . This important result, illustrated in Fig.3.2, is in agreement with the
basic property that wave energy is transported along the direction of the
group velocity vg .

The contribution of a point of a dispersion curve where the phase Θ is
stationary, i.e. where dΘ/ds = 0, is then non-zero if sign(h ·vg) = 1, but is
nil if sign(h ·vg) = −1. Thus, one has H(σ∆σθ) = 1 as well as H(h ·vg) = 1
at a stationary point (α , β) of a dispersion curve that contributes to the
Fourier representation (2.57a). The Heaviside step function H(σ∆σθ) in
this Fourier representation can indeed be expressed as H(h · vg) because
only points of stationary phase create far-field waves.

For instance, in the simplest case F = 0 and 1 � d that corresponds to
diffraction-radiation of regular waves by an offshore structure in deep water,
the dispersion relation (2.10) defines a single dispersion curve; specifically,
the circle k = f2. Expression (2.13c) for the phase function θ becomes

θ = f2h cos(γ − ψ) .

The derivative dθ/dγ = −f2h sin(γ − ψ) vanishes for

γ = ψ and γ = ψ + π . (3.8)

One then has two points of stationary phase along the dispersion circle
k = f2. These two stationary-phase points are marked in Fig.2.6 for the
particular case ψ = π/4. Expressions (2.35) and (2.13a-b) yield

h ·vg = h vg cos(γ − ψ) .

Thus, the point of stationary phase γ = ψ yields a non-zero contribution to
the Fourier integral (2.57a) and creates far-field waves. However, the point
γ = ψ + π yields a nil contribution and does not create waves.

Indeed, the point of stationary phase γ = ψ+π is the center of the ‘inert’
half ψ + π/2 < γ < ψ + 3π/2 of the dispersion circle k = f2 determined
by the step function H(σ∆σθ) in (2.57a), in accordance with (2.58) and
as is illustrated in Fig.2.6 for ψ = π/4. The point of stationary phase
γ = ψ similarly is the center of the ‘active’ half ψ − π/2 < γ < ψ + π/2
of the dispersion circle. Thus, the far-field waves created by an offshore
structure consist of a single system of waves associated with a single point
of stationary phase (a single wave generator) on a single dispersion curve.
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3.3 Far-field approximations
to a general wave integral

The wave potential φW(x) defined by (3.1) is now considered in the far field
1� h . Specifically, the basic wave integral

ΨW ≡
∫ ∞
−∞
ds â(s) e ihΘ(s)− (s−s0)2/`2 where 1� h (3.9)

is analyzed. This analysis, given below, shows that the far-field behavior
of the function ΨW defined by the integral (3.9) is greatly influenced by
the phase function Θ(s). Specifically, the value of the wave integral (3.9)
for 1 � h is dominated by the existence of point(s) where the derivative
Θ′ ≡ dΘ/ds of the phase function Θ(s) vanishes, i.e. where the phase Θ is
stationary.

The influence of the phase function Θ on the far-field value of the wave
integral (3.9) is analyzed by considering the behavior of the phase function
Θ(s) and of the amplitude function â(s) in the vicinity of any given (arbi-
trary) point s = s0 . Indeed, the localizing function exp[−(s − s0)2/`2 ] is
introduced in (3.9) to study the influence of the phase function Θ(s) in the
vicinity of a point s = s0 . Specifically, this localizing function is negligible
outside the approximate range s0 − 2 ` < s < s0 + 2 ` of effective width 4 `
determined by the positive real number `.

Thus, the phase function Θ(s) and the amplitude function â(s) in the
wave integral (3.9) are approximated via the Taylor series

Θ = Θ0 + (s− s0) Θ′0 + (s− s0)2 Θ′′0 /2 + . . . , (3.10a)

â = â0 + (s− s0) â′0 + (s− s0)2 â′′0 /2 + . . . , (3.10b)

where ′0 and ′′0 mean that the first or second derivatives are evaluated at the
point s = s0 , which is arbitrary as was already noted. The integral (3.9)
then becomes

ΨW = e ihΘ0
(
â0 ΨW

0 + â ′0 ΨW
1 + â′′0 ΨW

2 /2 + . . .
)

(3.11a)

where ΨW
n ≡

∫ ∞
−∞
dt tn e−t

2/`2+ ih (Θ′0 t+Θ′′0 t
2/2+ ... ) (3.11b)

and the change of variable t = s− s0 was performed.

Contribution of a point where Θ′0 6= 0

The contribution of a range s0 − 2 ` < s < s0 + 2 ` that does not contain
a point of stationary phase is considered first. Thus, it is now assumed
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that Θ′0 6= 0 and that the point s = s0 is not in the vicinity of a point of
stationary phase, i.e. is ‘far from a stationary point’. Expression (3.11b)
then yields

ΨW
0 ≈ 2

∫ ∞
0

dt e− t
2/`2 cos(hΘ′0 t) =

√
π ` e−`

2(Θ′0)2h2/4 and

ΨW
1 ≈ 2 i

∫ ∞
0

dt t e− t
2/`2 sin(hΘ′0 t) =

− i

Θ′0

∂ψW0
∂h

= i

√
π

2
`3 Θ′0 h e

−`2(Θ′0)2h2/4 .

The contributions of a point s = s0 where Θ′0 6= 0 to the integrals ΨW
n in

the Taylor series (3.11a) are then exponentially small in the limit h→∞.

Contribution of a point where Θ′0 = 0 and Θ′′0 6= 0

The contribution of a range s0 − 2 ` < s < s0 + 2 ` that contains a point
of stationary phase is now considered. Specifically, it is now assumed that
Θ′0 = 0 and Θ′′0 6= 0. Expression (3.11b) then yields

ΨW
0 ≈ 2

∫ ∞
0

dt e− t
2/`2

[
cos(hΘ′′0 t

2/2) + i sin(hΘ′′0 t
2/2)

]
and

ΨW
1 ≈

∫ ∞
−∞
dt t e−t

2/`2 + ihΘ′′0 t
2/2 = 0 .

The integral ΨW
0 is convergent (even as `→∞) and is given by

ΨW
0 ≈

√
2π

h |Θ′′0 |
1+ sign(Θ′′0) i√

2
=

√
2π

h |Θ′′0 |
e sign(Θ′′0 ) iπ/4

in the limit ` → ∞ . This asymptotic approximation and the expansion
(3.11a) then yield Kelvin’s stationary-phase approximation [3,1]

ΨW≈ â0

√
2π

h |Θ′′0 |
e i [hΘ0 + sign(Θ′′0 )π/4 ] . (3.12)

The stationary-phase approximation (3.12) is not valid if Θ′′0 = 0. This case
is now considered.

Contribution of a point where Θ′0 = 0 and Θ′′0 = 0

Specifically, the contribution of a range s0− 2` < s < s0 + 2` that contains
a stationary-phase point s = s0 where Θ′0 = 0 and Θ′′0 = 0 is considered. In
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the limit `→∞, expression (3.11b) then yields

ΨW
0 ≈ 2

∫ ∞
0

dt cos(hΘ′′′0 t
3/6) =

61/3 2

(hΘ′′′0 )1/3

∫ ∞
0

du cos(u3) =
Γ(1/3)/

√
3

(hΘ′′′0 /6)1/3

ΨW
1 ≈ 2 i

∫ ∞
0

dt t sin(hΘ′′′0 t
3/6) =

62/3 2 i

(hΘ′′′0 )2/3

∫ ∞
0

du u sin(u3) =
i Γ(2/3)/

√
3

(hΘ′′′0 /6)2/3

where Γ(·) is the Gamma function. This asymptotic approximation and the
expansion (3.11a) then yield Havelock’s stationary-phase approximation

ΨW≈ â0
Γ(1/3)√

3

[
6

hΘ′′′0

]1/3
e ihΘ0 ≈ 1.5467 â0

[
6

hΘ′′′0

]1/3
e ihΘ0 . (3.13)

The stationary-phase approximation (3.13) is valid if Θ′0 = 0 and Θ′′0 = 0,
but Θ′′′0 6= 0.

The asymptotic approximations (3.12) and (3.13) show that the function
ΨW defined by the wave integral (3.9) decays like 1/h1/2 as h→∞ if Θ′0 = 0
and Θ′′0 6= 0, or decays like 1/h1/3 (less rapidly) if Θ′0 = 0 = Θ′′0 and Θ′′′0 6= 0.

Other far-field approximations

The Kelvin and Havelock far-field stationary-phase approximations (3.12)
and (3.13) have been extended in a number of ways. Indeed, asymptotic
approximations of integrals are considered and applied in a vast literature.
[3,2]

3.4 Far-field approximation to free waves

Kelvin’s stationary-phase approximation (3.12) to the wave integral (3.9),
applied to the general Fourier superposition (2.57) of elementary free waves,
yields the far-field approximation

φW(x) ≈
∑
θ′j=0

H(σ∆j σθj) aφj

√
2π

|θ′′j |
azj e

i [ θj+sign(θ′′j )π/4 ] (3.14a)

where the relation θ = hΘ was used. The phase function θj and its deriva-
tives θ′j and θ′′j are given by

θj ≡ αj x+ βj y , θ′j ≡ α′j x+ β ′j y , θ′′j ≡ α′′j x+ β ′′j y (3.14b)

where (α′, β ′) ≡ d(α, β)/ds , (α′′, β ′′) ≡ d2(α, β)/ds2 (3.14c)

and ds ≡
√

(dα)2 + (dβ)2 is the differential element of arc length of a dis-
persion curve. The summation in (3.14a) is performed over all the points
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(αj , βj) that satisfy the stationary-phase condition θ′j = 0 for every disper-
sion curve defined by the dispersion relation ∆ = 0 .

Every component of the superposition of far-field waves defined by the
analytical approximation (3.14a) decays as 1/

√
h as h→∞, i.e. one has

aφj

√
2π

|θ′′j |
azj e

i [ θj+sign(θ′′j )π/4 ] = O

(
1√
h

)
as h ≡

√
x2 + y2 →∞ .

The waves created by an offshore structure or by a ship that advances in
calm water or through regular waves therefore decay as 1/

√
h as h → ∞ ,

in accordance with basic considerations related to the energy transported
by elementary waves. The far-field stationary-phase approximation (3.14)
becomes more accurate as h increases, and evidently is not valid as h → 0
or for small values of h, i.e. in the near field.

The amplitude of every wave component is given by

√
2π aφj /

√
|θ′′j | where aφj ≡ aφ(αj , βj)

is the value of the amplitude function at a point (αj , βj) of the dispersion
curve that satisfies the stationary-phase condition θ′j ≡ θ′(αj , βj) = 0 .

The amplitude function aφ can only be determined from the near-field
hull-surface boundary condition, which is ignored in the far-field boundary-
value problem (2.3) considered in this chapter. However, further information
about far-field free waves—notably wave patterns—created by ships and
offshore structures can be gained from the far-field approximation (3.14a),
i.e. without solving the near-field boundary-value problem that includes
the boundary condition at the ship-hull surface. This additional analysis of
far-field waves is considered further on.

The asymptotic (stationary-phase) approximation (3.14a) shows that the
far-field waves due to diffration-radiation of regular waves by an offshore
structure, and the far-field waves created by a ship that steadily advances
in calm water or through regular waves, mostly consist of a finite (indeed
small) number of dominant waves. These waves are associated with points
of the dispersion curves, defined by the dispersion relation, where the phase
θ is stationary, i.e. where θ′ = 0 as already noted.

For instance, for diffraction-radiation of regular waves by a floating body
without forward speed, i.e. in the particular case F = 0, the dispersion rela-
tion (2.10) defines a single dispersion curve and only one point of stationary
phase that satisfies the condition 0 < σ∆σθ exists for any ray angle ψ,
in accordance with (2.58) and (2.56). Thus, only one wave exists at any
far-field point (x, y) = h(cosψ, sinψ) in this (particularly simple) case.

For a ship that steadily advances along a straight path in deep water,
i.e. in the particular case f = 0 and d = ∞ , the dispersion relation (2.7)
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becomes F 2α2 = k . This dispersion relation defines two dispersion curves,
which are symmetric about both the axis α = 0 and the axis β = 0 . It is
shown in the next chapter that, in this case, one has either no (i.e. zero)
point of stationary phase, or two points of stationary phase where 0 < σ∆σθ ,
depending on the location of the point (x, y) = h(cosψ, sinψ) with respect
to the path of the ship.

Thus, the free surface around a ship that steadily advances in calm water
can be divided into a region (notably ahead of the ship) where there are no
waves, and a wake behind the ship where two waves (called ‘transverse’ and
‘divergent’ waves) are found at every point. This commonly-observed and
well-known feature of the flow around a ship that steadily advances in calm
water of large depth is demonstrated in the next chapter.

Alternative representations of dispersion curves

Expressions (3.14c) presume that the dispersion curves are defined in terms
of parametric representations in which the arc length s is taken as the
parameter. Alternative parametric representations of the dispersion curves
can evidently be used. Both the elementary wave function

azj e
i [ θj+sign(θ′′j )π/4 ]

and the potential function φW(x) in (3.14a) are independent of the para-
metric representation chosen to define the dispersion curves ∆ = 0. The
stationary-phase approximation (3.14a) is then independent of the mathe-
matical representation of the dispersion curves.

Indeed, the amplitude functions aφ(s) and aφ(s) associated with alter-
native parametric representations k(s) and k(s) of a dispersion curve are
related as

aφ(s) = (ds/ds) aφ(s) .

The derivatives of the phase functions θ(s) and θ(s) are similarly related as

θ′(s) = (ds/ds) θ′(s) and θ′′(s) = (ds/ds)2 θ′′(s) .

One then has

aφ(s)/
√
|d2θ(s)/ds2 | = sign(ds/ds) aφ(s)/

√
|d2θ(s)/ds2 | .

However, the integration limits in the integral (3.9) must be interchanged
if ds/ds < 0 .

Application to offshore structures in deep water

For purposes of illustration, Kelvin’s far-field approximation (3.12) is now
applied to the wave integral ϕW(f2h, ψ) defined by (2.59b) in the Fourier
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representation (2.59) of regular waves created by an offshore structure in
deep water. The phase function θ and its derivatives θ′ and θ′′ with respect
to γ are given by

θ = f2h cos(γ − ψ) , θ′ = −f2h sin(γ − ψ) , θ′′ = −f2h cos(γ − ψ) .

The integration range ψ−π/2 ≤ γ ≤ ψ+π/2 in (2.59b) contains the single
point of stationary phase γ = ψ, where sign(θ′′) = −1 and |θ′′| = f2h. The
stationary-phase approximation (3.12) then yields

ϕW(f2h, ψ) ≈
√

2π

f2h
aφγ=ψ e

i (f2h−π/4) (3.15a)

where aφγ=ψ means that the function aφ(γ) is evaluated at γ = ψ. Expres-
sions (2.1), (2.59) and (3.15a) yield

φ̂(x, t) ≈
√

2π

f2h
ef

2z Re aφγ=ψ e
i (f2h−f t−π/4) . (3.15b)

The flow potential (3.15b) is associated with concentric circular waves with
frequency f, wavenumber k = f2, wavelength λ = 2π/f2, and amplitude

that decays as 1/
√
h ≡ 1/

√
x2 + y2 as the waves propagate outward away

from a wave generator (floating body) centered at h = 0.

3.5 Wave patterns

Additional information about important features of far-field waves created
by ships and offshore structures can be obtained from the dispersion function
∆(f, α, β ;F, d) and the related dispersion curves ∆ = 0 . In particular, the
wave patterns formed by far-field waves are now considered.

The relations (3.6) and (2.13b) yield{
x

y

}
= − sign(∆f)

h

‖∇k∆‖

{
∆α

∆β

}
. (3.16)

This relation and expression (2.29) show that the phase θ ≡ αx+βy of the
trigonometric function in (2.57c) and (2.60) is given by

θ ≡ αx+ βy = − sign(∆f)
h k

‖∇k∆‖ ∆k .

This relation yields
h

‖∇k∆‖ =
|θ |

k|∆k |
.
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The relation (3.16) can then be expressed as{
x

y

}
= − sign(∆f )

|θ |/k
|∆k |

{
∆α

∆β

}
. (3.17)

The relation (3.17), where the point (α , β) moves along a dispersion curve
∆ = 0 , yields parametric equations that determine the coordinates x and y
associated with any given value of the phase θ , e.g. a particular wave crest
or trough.

If the dispersion relation ∆ = 0 defines several dispersion curves, differ-
ent wave patterns are obtained as the point (α , β) in (3.17) moves along
every dispersion curve, as is illustrated in chapter 5 for a ship that steadily
advances through regular waves. Specifically, the dispersion relation (2.7)
for deep water defines three dispersion curves if 0 ≤ τ < 1/4 or two disper-
sion curves if 1/4 < τ , and a ship that steadily advances through regular
waves consequently creates three or two families of waves and corresponding
distinct wave patterns in these two flow regimes.

Successive waves, e.g. a series of wave crests, are obtained if a series of
phase values |θn | = 2nπ with n = 1, 2, 3, . . . is considered in (3.17). Thus,
far-field wave patterns can be determined from the dispersion function ∆
via the parametric equations

hn ≡
{
xn
yn

}
=

2nπσ∆

k∆k

{
∆α

∆β

}
≡ 2nπσ∆

k∆k
∇k∆ (3.18)

where σ∆ is given by (2.52). This relation yields

hn ≡ |hn | ≡
√
x2
n + y2

n =
2nπ ‖∇k∆‖

k |∆k |
≡ nλ ‖∇k∆‖

|∆k |
(3.19a)

where λ ≡ 2π/k is the wavelength. Expressions (3.19a) and (2.22) yield

hn |cos(γ − δ)| = nλ (3.19b)

where γ and δ are the angles associated with the phase velocity vp or the
group velocity vg in (2.16) and (2.25d).

Wave patterns and group velocity

Expressions (3.18)-(3.19a) and (2.52) yield

hn
hn

= −sign(∆f)
∇k∆

‖∇k∆‖ (3.20)

in agreement with (3.6). This relation and expression (2.25c) relate the
group velocity vg and the wave pattern as

hn
hn
≡ (xn , yn)√

x2
n + y2

n

=
(vxg , v

y
g )

vg
≡ vg
vg
. (3.21)
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This relation shows that a wave observed at a far-field point hn ≡ (xn , yn)
stems from the energy that is transmitted, at the group velocity vg , along
straight lines drawn from the origin h0 ≡ (x0 , y0) = (0, 0) of the wave
pattern, as is illustrated in Fig.3.2. The origin h0 of the wave pattern
approximates a near-field wavemaker, e.g. a ship or an offshore structure,
which appears as a point to a far-field observer at a large distance from the
near-field wavemaker.

The factor σ∆, given by (2.52), in the parametric equations (3.18) that
determine far-field wave patterns is related to the generalized elementary
waves considered in sections 2.8 and 2.9. This factor is crucial. For instance,
it explains why a ship that steadily advances in calm water only creates
waves behind the ship. Indeed, if the basic elementary waves given in section
2.2 are used instead of the generalized elementary waves given in sections
2.8 and 2.9, the resulting parametric equations that determine far-field wave
patterns do not involve the factor σ∆ and cannot predict whether steady
ship waves exist behind the ship or ahead.

Wave patterns and phase velocity

The phase function
θn ≡ αxn + β yn

in expressions (3.14) for the stationary-phase approximation of far-field
waves is constant along a wave-crest line. It follows that

dθn/ds = (xn dα/ds+ yn dβ/ds) + (αdxn/ds+ β dyn/ds) = 0 .

This relation and the stationary-phase relation

dθn/ds = xn dα/ds+ yn dβ/ds = 0

yield αdxn + β dyn = 0 . This relation shows that the differential element
(dxn , dyn) of a far-field wave-crest line is orthogonal to the wave vector
k ≡ (α, β) and consequently to the phase velocity vp = vp k/k given by
(2.16). The phase velocity vp is then orthogonal to the constant-phase
curves (e.g. wave crests and troughs) defined by (3.18), as is illustrated in
Fig.3.2.

Diffraction-radiation of regular waves by offshore structures

In the particularly simple case of diffraction-radiation of regular waves by
an offshore structure in finite water-depth, the parametric equations (3.18),
the dispersion relation (2.10) and expressions (2.31a) and (2.53b) yield

f2

{
xn
yn

}
=

2nπ

k∗/f2

{
cosγ

sinγ

}
where − π ≤ γ ≤ π
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and k∗/f
2 ≡ kω∗ is the root of the dispersion relation (2.38). These para-

metric equations define a series of concentric circles with radii

hωn ≡ Hω
n ω

2/g = 2nπ/kω∗ = 2nπ tanh(dωkω∗ ) ≤ 2nπ . (3.22)

Furthermore, the phase velocity vp and the group velocity vg are colinear,
and one has δ = γ in accordance with (2.35), (2.25d) and (2.31a).

3.6 Cusps and asymptotes of wave patterns

Inflection point of a dispersion curve

The unit vector
∇k∆

‖∇k∆‖ ≡
(∆α ,∆β)√

∆2
α + ∆2

β

is normal to a dispersion curve ∆(f, α, β ;F, d) = 0. Thus, the unit vector

(∆β ,−∆α)/
√

∆2
α + ∆2

β

is tangent to a dispersion curve, and the derivative d/ds in a direction
tangent to a dispersion curve is given by

1√
∆2
α + ∆2

β

{
∆β

−∆α

}
·
{
∂α
∂β

}
=

∆β ∂α −∆α ∂β
‖∇k∆‖ . (3.23)

An inflection point of a dispersion curve is a point where the angle δ
between the vector ∇k∆ ≡ (∆α ,∆β) normal to the dispersion curve and
the α axis reaches a local maximum or minimum. Thus, inflection points
are determined by the condition

d(tan δ)/ds ≡ d(∆β/∆α)/ds = 0 .

This relation and (3.23) yield

∆β ∂α(∆β/∆α)−∆α ∂β (∆β/∆α) = 0 .

This condition can be verified to yield

∆2
β ∆αα − 2 ∆α ∆β ∆αβ + ∆2

α ∆ββ = 0 . (3.24a)

Equation (3.24a) determines the inflection point(s) of a dispersion curve
defined by an implicit equation ∆(f, α, β ;F, d) = 0 .

An inflection point of a dispersion curve defined by the parametric equa-
tions α = A(t) and β = B(t) is determined by the equation

A′B ′′ −B ′A′′ = 0 (3.24b)
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Figure 3.3: An inflection point, marked I in the figure, of a dispersion
curve ∆ = 0 in the Fourier plane (α, β) yields a cusp, marked C, of the
corresponding wave pattern in the free-surface plane (x, y).

where the superscript ’ means differentiation with respect to the parameter
t. For a dispersion curve defined by the polar equation k = k0(γ), equation
(3.24b) yields

k2
0 + 2 (k′0)2− k0 k

′′
0 = 0 (3.24c)

where the superscript ’ means differentiation with respect to the polar angle
γ. Finally, for a dispersion curve defined by the explicit equations β = B(α)
or α = A(β) , (3.24b) becomes

d2B/dα2 = 0 or d2A/dβ2 = 0 , (3.24d)

respectively. The alternative equations (3.24) can be used to determine the
inflection point(s) of a dispersion curve, depending on the mathematical
representation of the dispersion curve.

Cusp line of a wave pattern

A dispersion curve that has an inflection point (αi, β i) is now considered.
As the point (α , β) moves along the dispersion curve in the vicinity of the
inflection point (αi, β i) , the angle δ between the vector ∇k∆ normal to
the dispersion curve and the α axis reaches a local maximum or minimum,
denoted as δ i , at the inflection point. Accordingly, the corresponding angle
ψ in the free-surface plane also reaches a local maximum or minimum ψ i,
given by ψ i = δ i or ψ i = δi + π, and the far-field wave pattern has a cusp
at the angle ψ i, as is illustrated in Fig.3.3.
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Asymptote line of a wave pattern

The relations (3.19a) and (2.22) yield

hn
2nπ

=
‖∇k∆‖
k |∆k |

≡

√
∆2
α + ∆2

β

|α∆α + β∆β |
≡ 1

k | cos(γ − δ)| .

One then has
hn ≡

√
x2
n + y2

n →∞ if k∆k = 0 (3.25)

or γ − δ = ±π/2 with k < ∞. Thus, a point (k , γ) of a dispersion curve
where k∆k vanishes yields an asymptote of the far-field wave pattern, at an
angle ψ that is orthogonal to the angle γ at the point where k∆k vanishes.
The wave patterns depicted in Fig.5.12, Fig.5.15 and Fig.5.16, created by a
ship that advances at a constant speed Vs through regular waves of frequency
ω in the regime 1/4 < τ ≡ Vs ω/g are examples of patterns that include
asymptote lines.

3.7 Size and shape of wave generator,
and wave interferences

The analytical representation (3.18) of wave patterns is associated with the
stationary-phase approximation (3.14). This approximation is based on an
asymptotic (far-field) analysis that only involves the phase θ. Specifically,
this stationary-phase analysis does not involve the amplitude function aφ in
(3.14). However, the wave-amplitude function aφ, related to the size and
the shape of the wave generator (ship or offshore structure), can have a
significant influence on the actual appearance of the far-field waves, as is
well known from common observations of the waves created by various types
of ships (slow or fast monohull or multihull ships, fully-submerged bodies)
and is illustrated in Fig.3.4 for diffraction-radiation of regular waves by an
offshore structure.

Indeed, the far-field stationary-phase approximation (3.14) and the re-
lated representation (3.18) of wave patterns consider the far-field waves
created by a near-field wave generator that is located at a point, taken as
the origin h = (x, y) = (0, 0) . The assumption that far-field waves originate
from a point located at the centroid of a ship hull (or offshore structure)
is reasonable because a ship appears as a point from far away, i.e. in the
far field. However, an important limitation of this 1-point wavemaker flow
model is that the relations (3.14) and (3.18) evidently cannot account for
the influence of the size and the shape of the ship or structure.

In particular, a monohull ship that advances along a straight path in
calm water is a slender body that creates two dominant waves at the bow
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Figure 3.4: Contour plots of the real part of the potential function ϕW

defined by (3.15a) where the amplitude function aφ is taken as aφ = sinγ on
the left side or as aφ = cos(3γ) on the right side, within the annular region
5 ≤ ω2

√
X2 + Y 2/g ≤ 25 . These wave patterns illustrate the influence of

the wave-amplitude function aφ, and of wave interferences, in the particular
case of diffraction-radiation of regular waves by an offshore structure.

and the stern of the ship, where the hull geometry varies abruptly, and is
then more realistically modeled as a 2-point wavemaker than as a 1-point
wavemaker, which is a highly simplified flow model that does not involve the
length of the ship or the related Froude number F . Interferences between
the two dominant waves created by the bow and the stern of a ship have
important consequences that cannot be explained via the representation
(3.18) of wave patterns based on the stationary-phase approximation (3.14)
for a 1-point wavemaker model.

Specifically, interferences between the transverse waves created (predom-
inantly) by the bow and the stern of a ship result in oscillations (humps and
hollows) in the wave drag of the ship at low Froude numbers (for F smaller
than about 0.4) where transverse waves are important. Similarly, construc-
tive interferences between the divergent waves, dominant at high Froude
numbers (for F greater than about 0.6), created by the bow and the stern
of a ship result in highest waves along rays that are located inside the cusps
of the Kelvin wake and the appearance of a ‘narrow ship wake’. [3,3]

The assumption that far-field waves created by a near-field wavemaker
(a ship hull or an offshore structure) are generated at a single point located
at the centroid of the wavemaker is then restrictive, notably for floating
bodies that consist of several major elements, e.g. the four legs of a typical
offshore structure or the three hulls of a trimaran. Indeed, the 1-point
wavemaker model is restrictive even for a monohull ship, as is illustrated
by the high-speed ship wakes narrower than the Kelvin wake noted in the
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previous paragraph.

Useful additional information about far-field waves can be gained by
considering the superposition of far-field waves created by major elements
of a near-field wave generator, e.g. the legs of an offshore structure in regular
waves, and the bow and the stern of a monohull ship or the three hulls of a
trimaran that steadily advances in calm water.

The relations (3.14) and (3.18) can readily be applied to a wave generator
located at a point (x, y) = (xm , ym) by replacing (x, y) by (x−xm , y−ym) .
Thus, the horizontal distance h, the polar angle ψ and the phase angle θ
defined by (2.13a-c) become

hm ≡
√

(x− xm)2 + (y − ym)2 , tan ψm ≡ (y − ym)/(x− xm)

and θm ≡ α(x− xm) + β (y − ym) .

For instance, for wave diffraction-radiation by an offshore structure that
consists of M main elements, e.g. M cylindrical legs, the far-field approxi-
mation (3.15a) yields

ϕW√
2π
≈
m=M∑
m=1

aφγ=ψm
e i (f2hm−π/4)/

√
f2hm (3.26)

where aφγ=ψm
denotes the value of the amplitude function aφ(γ) at γ = ψm .

An important feature of the superposition of far-field waves created at
several points (xm , ym) is wave interferences. These interference effects
are illustrated in Fig.3.5 for regular waves created by identical (in-phase)
heaving motions of three or four identical vertical circular cylinders, i.e. for
M = 3 or M = 4 in (3.26) where the function aφ is taken as aφ = 1. The
heaving vertical cylinders are centered at the points

f2(xm , ym) = ρ (cosµm , sinµm) where µm = 2π (m−1)/M (3.27)

and ρ ≡ f2
√
x2
m + y2

m = π or ρ = 2π .

Fig.3.5 shows that wave interferences, associated with the size and the
shape of a wavemaker (ship or offshore structure) and the related ‘amplitude
function’ in the Fourier representation of far-field waves, can have a striking
influence on the actual appearance of far-field wave patterns, which can
then greatly differ from the wave patterns predicted via a stationary-phase
analysis for a 1-point wavemaker. [3,4]

Nevertheless, the wave patterns predicted via a ‘phase-only’ analysis, in
which the influence of the amplitude function related to the size and the
shape of the wavemaker is ignored, provides important information about
the far-field waves that correspond to a given dispersion function. These
basic wave patterns are considered in chapters 4 and 5 for a ship that steadily
advances in calm water or through regular waves.
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Figure 3.5: Contour plots of the real part of the potential function ϕW

defined by (3.26) with aφ = 1, M = 3 (left side) or M = 4 (right) and
ρ ≡ ω2

√
X2
m + Y 2

m /g = π (top half) or ρ = 2π (bottom) within the annular

region 10 ≤ ω2
√
X2 + Y 2/g ≤ 35. These wave patterns illustrate the effect

of interferences in the particular case of radiation of regular waves by an
offshore structure.
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Chapter 4

Free ship waves in
calm deep water

The analysis of free waves considered in the two previous chapters largely
holds for a broad class of dispersive plane waves associated with a general
dispersion relation. The results of this general analysis are applied in this
chapter to the free waves created by a ship that advances at a constant
speed in calm water of large depth and lateral extent.

4.1 Dispersion relation and dispersion curves

In the special case f = 0 and d =∞ considered in this chapter, the disper-
sion function ∆ defined by (2.7) or (2.9) becomes

∆(α, β ;F ) ≡ F 2α2−k where k ≡
√
α2+β2 . (4.1)

The corresponding dispersion relation ∆(α, β ;F ) = 0 can be expressed as

(αV )2 = kV =
√

(αV )2 + (βV )2 where (4.2)

(kV, αV, βV ) ≡ F 2(k, α, β) ≡ (K,Kx,Ky)V 2
s /g (4.3)

denote speed-scaled wavenumbers, in accordance with (1.33b).

The dispersion relation (4.2) and expressions (2.13b) yield

(kV, αV, βV ) = (1, cosγ, sinγ)/cos2γ where − π ≤ γ ≤ π .

One then has two dispersion curves, depicted in Fig.4.1, that correspond
to −π/2 < γ < π/2 and π/2 < γ < 3π/2. These dispersion curves are
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Figure 4.1: Dispersion curves associated with ship waves in calm deep water.

symmetric with respect to the axis αV = 0 and are also symmetric about
the axis βV = 0, and can be represented as

(kV ,±αV , βV ) = (1, cosγ, sinγ)/cos2γ where − π/2 < γ < π/2 (4.4a)

or in the alternative forms

± αV =

√
1/2 +

√
1/4 + (βV )2 where −∞ < βV <∞ , (4.4b)(

kV,±αV, βV
)

=
(
1+ q2,

√
1+ q2, q

√
1+ q2

)
where −∞ < q <∞ .

(4.4c)

The polar equations (4.4a) determine the speed-scaled wavelength λV as

λV ≡ λ

F 2
≡ gΛ

V 2
s

=
2π

kV
= 2π cos2γ ≤ 2π ≡ λVmax . (4.5a)

The parametric representation (4.4c) similarly yields

kV = 1+ q2 ≥ 1 and λV =
2π

kV
=

2π

1+ q2
≤ 2π ≡ λVmax . (4.5b)

The parametric representation (4.5b) yields

λV/λVmax = 1, 0.5, 0.2, 0.1, 0.02 for q = 0, 1, 2, 3, 7 .

Expressions (4.5) show that a ship advancing in calm deep water at a
speed Vs creates waves with wavelengths

Λ ≤ Λmax ≡ 2πV 2
s /g .
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The longest waves created by the ship, along its track as is shown further
on, are shorter than the ship length Ls at ‘low’ Froude numbers

F ≡ Vs/
√
gLs < 1/

√
2π ≈ 0.4

but are longer than the ship length at ‘high’ Froude numbers 0.4 < F ; i.e.

Λmax< Ls if F < 0.4 and Ls < Λmax if 0.4 < F .

The Froude number F ≈ 0.4 is then significant for practical applications,
notably for ship design.

The Cartesian representation (4.4b) yields

|αV | ∼ 1+ (βV )2/2 as βV→ 0 and |αV | ∼
√
|βV | as βV → ±∞ .

The parametric representation (4.4c) yields

βV ∼ q + q3/2 � |αV | ∼ 1+ q2/2 ∼ kV = 1+ q2 as q → 0 ,

|αV | ∼ q � |βV | ∼ q2∼ kV as q → ±∞ .

The representation (4.4c) is convenient to evaluate the Fourier integral
that determines the waves contained in the Green function and the related
Fourier integrals associated with a distribution of singularities.

4.2 Elementary free ship waves

The dispersion relation (4.2) shows that the waves created by a ship that
advances at a constant speed in calm deep water consist of a superposition
of elementary free waves

e k
VzV+ i θ where kV = 1/cos2γ and θ ≡ kV(xV cosγ + yV sinγ) . (4.6)

Moreover, xV, yV, zV denote the speed-scaled coordinates

(xV, yV, zV ) ≡ (x, y, z)/F 2≡ (X,Y, Z)g/V 2
s (4.7)

as in (1.33b). The phase function θ in (4.6) is then given by

θ = (xV cosγ + yV sinγ)/cos2γ = (xV cosγ + yV sinγ)(1+ tan2γ) . (4.8)

In the far field hV ≡
√

(xV )2 + (yV )2 →∞, dominant contributions to a
superposition of the elementary waves (4.6) stem from values of γ for which
the phase function θ given by (4.8) is stationary, i.e. from the roots of the
‘stationary-phase equation’ dθ/dγ = 0. This equation yields

tanψ∗ ≡ yV

−xV ≡
Y

−X =
tanγ

1+ 2tan2γ
(4.9)

where the ray angle ψ∗ is measured from the negative x axis (x < 0, y = 0),
i.e. from the track of the ship, which corresponds to ψ = π and ψ∗ = 0.
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4.3 Kelvin’s wave pattern

The far-field wave pattern due to a ship that steadily advances in calm deep
water, known as Kelvin’s wave pattern or Kelvin’s wake, is now considered.

Analytical representation of Kelvin’s ship wake

The far-field wave pattern associated with a dispersion function ∆ is de-
termined from ∆ by the general parametric equations (3.18), where σ∆ is
given by (2.53b) in the special case of steady ship waves now considered.
The pattern of far-field waves created by a ship that steadily advances in
calm deep water is then defined by the parametric equations

hn ≡
{
xn
yn

}
= −sign(α)

2nπ

k∆k

{
∆α

∆β

}
(4.10)

where n = 1, 2, 3, . . . and ∆ is the dispersion function (4.1). The derivatives
∆α , ∆β and ∆k of ∆ in (4.10) are given by (2.31b), with td = 1 in deep
water. One then has

∆α = (2F 2k −1)α/k = (2−1/kV )αV = (1+sin2γ)/cosγ , (4.11a)

∆β = −βV/kV = − sinγ , ∆k = 2kV cos2γ − 1 = 1 (4.11b)

where expressions (4.2), (4.3) and (4.4a) were used.

Expressions (4.7), (4.10) and (4.11) yield{
−xVn
yVn

}
= 2nπ

{
1+ sin2γ

sinγ cosγ

}
|cosγ | with − π < γ < π . (4.12)

The parametric equations (4.12) define the pattern of free waves created by a
ship that advances at a constant speed in calm deep water. Equations (4.12)
show that the dispersion curves located in the half planes −π/2 < γ < π/2
and π/2 < γ < 3π/2 yield identical waves patterns, and that these wave
patterns are symmetric about the horizontal axis yV = 0, i.e. the track of
the ship.

The Kelvin wave pattern defined by (4.12) can then be represented as{
−xVn
yVn

}
= 2nπ

{
1+ sin2γ

sinγ cosγ

}
cosγ where − π/2 ≤ γ ≤ π/2 . (4.13a)

These expressions yield

hVn ≡
√

(xVn )2 + (yVn )2 = 2nπ
√

1+ 3 sin2γ cosγ (4.13b)
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Figure 4.2: Kelvin’s pattern of transverse and divergent waves created by a
ship that advances at a constant speed in calm deep water.

where −π/2 ≤ γ ≤ π/2. Expressions (4.7), (4.10) and (4.11) also yield the
representation

g

V 2
s

{
−Xn

Yn

}
=

2nπ

kV

{
(2−1/kV )

√
kV

±
√

1−1/kV

}
where 1 ≤ kV . (4.14)

The Kelvin wave pattern defined by the alternative parametric equations
(4.13a) or (4.14) is depicted in Fig.4.2 for n = 1, 2, . . . , 5.

The Kelvin wave pattern (4.12) only depends on the speed-scaled co-
ordinates xV and yV defined by (4.7). Thus, Kelvin’s ship wave pattern
is independent of the length Ls of the ship, and only depends on the ship
speed Vs and the acceleration of gravity g.

Expressions (4.12) yield xn < 0, which shows that a ship that steadily
advances in calm deep water only creates waves in the region x < 0 behind
the ship [4,1]. These expressions also show that Kelvin’s wave pattern is
symmetric about the axis y = 0, i.e. the track of the ship, as is expected for
a ship that is modeled as a one-point wavemaker.

Expressions (4.12) yield

tanψ∗ ≡ yVn
−xVn

≡ yn
−xn

≡ Yn
−Xn

=
tanγ

1+ 2 tan2γ
(4.15a)

in agreement with the stationary-phase relation (4.9). As was already noted,
the angle ψ∗ in (4.15a) is measured from the negative x axis (x < 0, y = 0),
i.e. from the ship track, which corresponds to ψ = π and ψ∗ = 0. Expression
(4.15a) determines the ray angle ψ∗ of a dominant wave in terms of its
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propagation angle γ. Expression (4.15a) yields

2 tanψ∗ tan2γ − tanγ + tanψ∗= 0 . (4.15b)

Equation (4.15b) is a quadratic equation that determines tanγ in terms of
tanψ∗, and therefore determines the wave-propagation angle γ in terms of
the ray angle ψ∗.

The Kelvin wake angle ψK

The quadratic equation (4.15b) has two distinct real roots if tan2ψ∗< 1/8,
i.e. if

− ψK< ψ∗< ψK where ψ∗ ≡ arctan

(
yVn
−xVn

)
and (4.16a)

ψK ≡ arctan(1/
√

8) = arcsin(1/3) ≈ 19◦28′ (4.16b)

is the Kelvin wake angle. If ψK< |ψ∗|, the quadratic equation (4.15b) has
no real root, and waves do not exist outside the Kelvin wedge (4.16a) that
trails a ship.

The Kelvin angle (4.16b) and the wave pattern (4.13a) are indepen-
dent of the Froude number, and are then identical for every ship, including
fully-submerged bodies (e.g., a submarine at a low submergence depth), dis-
placement ships (built in a wide range of lengths and speeds), hovercrafts
and surface-effect-ships, fast ships and planing boats. This classical theo-
retical result is based on a far-field stationary-phase analysis in which a ship
is modeled as a 1-point wavemaker, as is explained in section 3.7.

If tan2ψ∗= 1/8, i.e. if ψ∗= ±ψK , the quadratic equation (4.15b) has a
double real root, given by

tanγC = ±1/
√

2 i.e. γC≈ ±35◦16′ (4.17)

that corresponds to the cusps of the Kelvin wake. Thus, Kelvin’s pattern of
free waves behind a ship that steadily advances in calm deep water has two
cusps along the ray angles ψ∗ ≈ ±19◦28′, as can be observed in Fig.4.2 .

These cusps correspond to inflection points of the dispersion curves, as
is shown in section 3.6. Specifically, the inflection-point condition (3.24c)
for a dispersion curve defined via a polar representation yields

(kV )2 + 2(dkV/dγ)2− kVd2kV/dγ2 = 0 where kV = 1/cos2 γ (4.18)

and kV is the speed-scaled wavenumber defined by (4.3). Equation (4.18)
has real roots given by tanγ = ±1/

√
2 , in agreement with (4.17). The

corresponding cusp angles are determined by (4.15a) as

tanψ∗ =
tanγ

1+ 2 tan2γ
=
±1

2
√

2
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Figure 4.3: Wave-propagation angles γT and γD and related wave-crest
angles ϕT and ϕD of the dominant transverse and divergent waves found at
a ray angle ψ∗ within Kelvin’s pattern of ship waves in calm deep water.

in agreement with (4.16b).

If the parametric representation (4.4c) of the dispersion curves is used,
instead of the polar representation (4.4a), inflection points of the dispersion
curves are determined by the inflection-point equation (3.24b), which yields

2 q4 + q2−1 = 0 .

This equation has two real roots

qC = ±1/
√

2 ≈ ± 0.7 . (4.19)

Transverse and divergent waves

The two real roots of the quadratic equation (4.15b) are given by

tanγT =
2 tanψ∗

1+
√

1− 8 tan2ψ∗
and tanγD =

1+
√

1− 8 tan2ψ∗

4 tanψ∗
. (4.20a)

The two roots (4.20a) mean that at any point along a ray at an angle ψ∗

inside the Kelvin wedge (4.16a), one has two dominant waves, which are
known as transverse and divergent waves. These waves propagate at angles
γ = γT and γ = γD, as is shown in Fig.4.3. The corresponding angles of
the wave pattern (e.g. crest-lines) are given by

ϕT = (signγT ) 90◦− γT and ϕD= (signγD ) 90◦− γD . (4.20b)

The wavelength λV = 2π/kV = 2π cos2γ = 2π/(1+ tan2γ) is given by

λVT /π =
(

1+ 4 tan2ψ∗+
√

1− 8 tan2ψ∗
)

cos2ψ∗ and (4.20c)

λVD/π = 16 tan2ψ∗/
(

1+ 4 tan2ψ∗+
√

1− 8 tan2ψ∗
)

(4.20d)

for the transverse and divergent waves. Expressions (4.20) determine main
features—wave-propagation angles, wave-crest angles, wavelengths—of the
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Figure 4.4: Variations of the wave-propagation angles γT and γD (top left
corner), the wave-crest angles ϕT and ϕD (top right), the wavelengths λVT
and λVD (bottom left) and the speed-scaled group velocities V Tg /Vs and V Dg /Vs
(bottom right) related to the dominant transverse and divergent waves
found at ray angles 0 ≤ ψ∗ ≤ ψK within Kelvin’s pattern of ship waves
in deep calm water.

transverse and divergent waves found at a ray angle ψ∗ within the Kelvin
wake. The wave-propagation angles γT and γD, the wave-crest angles ϕT

and ϕD, and the wavelengths λVT and λVD given by (4.20) are depicted in
Fig.4.4 for ray angles ψ∗ within the positive half of the Kelvin wake (4.16).

Only the ranges 0 ≤ ψ∗ ≤ ψK and 0 ≤ γ ≤ π/2 associated with the
positive half 0 ≤ yV of the Kelvin wave pattern is now considered due to
symmetry about ψ∗= 0, γ = 0, yV = 0. Expressions (4.20) and Fig.4.4 show
that the wave-propagation angles γT and γD, the wave-crest angles ϕT and
ϕD, the wavenumbers kVT and kVD and the corresponding wavelengths λVT
and λVD of the transverse and divergent waves in Kelvin’s ship wake vary
within the ranges

0 ≤ tan2γT ≤ 1/2 ≤ tan2γD i.e. 0 ≤ γT ≤ 35◦16′≤ γD ≤ 90◦ , (4.21a)

0 ≤ tan2ϕD≤ 2 ≤ tan2ϕT i.e. 0 ≤ ϕD≤ 54◦44′≤ ϕT ≤ 90◦ , (4.21b)

1 ≤ kVT ≤ 3/2 ≤ kVD and 0 ≤ λVD≤ 4π/3 ≈ 4.2 ≤ λVT ≤ 2π ≈ 6.3 . (4.21c)

Expressions (4.21) and (4.15a) show that the longest ship waves are found
along the ship track ψ∗= 0 and correspond to γT = 0, ϕT = 90◦ and kVT = 1.

64



At the cusps of the Kelvin wake, expressions (4.21) yield

γT = γD = γC ≈ 35◦16′ , ϕT = ϕD = ϕC ≈ 54◦44′ , (4.22a)

kVT = kVD = kVC = 3/2 and λVT = λVD = λVC = 4π/3 . (4.22b)

Thus, the wavelength of the waves (transverse and divergent) at the cusps
of the Kelvin wake are equal to 2/3 of the wavelength of the longest (trans-
verse) waves at the track of the ship.

Expressions (4.20a-b) yield the asymptotic approximations

γD∼ 90◦− 2ψ◦ and ϕD∼ 2ψ◦ as ψ◦ → 0 (4.23a)

where ψ◦ ≡ 180ψ∗/π is expressed in degrees. These approximations show
that the divergent waves near the track ψ∗= 0 propagate in a direction γD

that is nearly orthogonal to the ship track.

Expressions (4.21c) also show that the divergent waves contain short
waves. In particular, the wavelength λVD of the divergent waves vanishes at
the ship track ψ∗= 0. Specifically, expression (4.20d) yields

λVD ≡ gΛD/V 2
s ∼ 8π (ψ∗)2 = π3ψ2

◦/4050 ≈ (ψ◦/11.4)2 as ψ◦ → 0 .
(4.23b)

Expressions (4.23b) and (4.22b) yield

λVD /λ
V
C ≡ ΛD/ΛC< 0.1 if ψ◦ < 7.4◦. (4.23c)

The relation (4.23c) shows that the divergent waves created by a ship that
steadily advances in calm deep water are significantly shorter than the waves
found along the cusps of Kelvin’s ship wake within an inner wedge with angle
approximately equal to 15◦. This inner wake, where divergent are short, is
a significant portion of the 39◦ angle of the Kelvin wake where waves exist.

The approximations (4.23b) mean that short divergent waves in the
vicinity of the track of a ship can be influenced by surface tension, which is
significant for wavelengths Λ smaller than about 7cm. Much shorter wave-
lengths near the ship track could also be influenced by viscosity. However,
a more stringent restriction stems from nonlinear effects and wavebreaking.

Specifically, although the amplitude A of the divergent waves created
by a ship vanishes at the ship track, the steepness A/Λ is unbounded at
ψ∗ = 0 because the wavelength Λ vanishes at a faster rate than the wave
amplitude A as ψ∗→ 0. Divergent waves therefore cannot exist within an
inner portion of the Kelvin wake that borders the track of a ship. Indeed,
the inner region where short divergent waves are too steep to exist in reality
is a significant portion of Kelvin’s ship wake [4,2].

If the dispersion curves are represented via the parametric representation
(4.4c), expression (4.19) shows that the transverse and divergent waves in
the Kelvin wake correspond to the ranges

0 ≤ |qT | ≤ |qC | ≡ 1/
√

2 ≈ 0.7 ≤ |qD | . (4.24)
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4.4 Group velocity

The group velocity, i.e. the transmission-velocity of energy, is determined
from the dispersion function ∆ by the general expressions (2.25). In the
particular case of steady ship waves, these expressions yield (2.33a), where
one has sd = 0 in deep water. Expression (2.33a) then yields

vg
F
≡ 1

F

{
vxg

vyg

}
=

sign(cosγ)

2
√
kV

{
cosγ

sinγ

}
−
{

1

0

}
=

1

2

{
cosγ

sinγ

}
cosγ −

{
1

0

}

where kV ≡ F 2k is the speed-scaled wavenumber and the dispersion relation
(4.4a) was used.

These expressions for the group velocity vg yield{
−V xg /Vs
V yg /Vs

}
=

1

2

{
1+ sin2γ

sinγ cosγ

}
where − π ≤ γ ≤ π (4.25a)

and the identity vg/F ≡ Vg/Vs was used. Expressions (4.25a) show that
the magnitude of the group velocity is given by

Vg
Vs

=

√
1+ 3 sin2γ

2
=

√
1− 3

4
cos2γ =

√
1− 3/4

1+ tan2γ
. (4.25b)

Expressions (4.25) determine the transmission velocity Vg of the wave energy
radiated by a ship in its wake.

At the cusps ψ∗ = ±ψK of the ship wake, one has tan2γC = 1/2 in
accordance with (4.20a), and expression (4.25b) yields Vg/Vs = 1/

√
2. At

the track ψ∗ = 0 of the ship, (4.20a) and (4.25b) yield γ = 0 or γ = 90◦

and Vg = Vs/2 or Vg = Vs for the transverse or divergent waves, and (4.25a)
yields Vg = −Vs/2 if γ = 0 (transverse waves) and Vg = −Vs if γ = 90◦

(divergent waves) where Vs ≡ (Vs, 0) is the velocity of the ship. The relation
(2.37) then shows that, in a sea-fixed frame of reference, one has

Vsea
g = Vs/2 if γ = 0 and Vsea

g = 0 if γ = 90◦ .

Expressions (4.25) for the group velocity and the parametric equations
(4.12) that define Kelvin’s wave pattern show that one has{

−xVn
yVn

}
= 4nπ

{
−V xg /Vs
V yg /Vs

}
| cosγ | . (4.26a)

These expressions and expressions (4.13b) and (4.25b) yield

(−xVn , yVn )/hVn = (−V xg , V yg )/Vg (4.26b)
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in agreement with the general relation (3.21). One then has V xg < 0 as well
as Xn < 0, and the group velocity Vg points toward the wake that trails
the ship. Expression (4.26b) illustrates how wave energy is transmitted, at
the group velocity vg , along straight lines that radiate from the ship, which
appears to be located at the origin of the wave pattern to a far-field observer
located at a large distance from the ship. The relations (4.26b) and (4.9)
yield

V yg
−V xg

=
Yn
−Xn

= tanψ∗ =
tanγ

1+ 2 tan2γ
. (4.26c)

The group velocities V Tg and V Dg that correspond to the transverse and

divergent waves are given by (4.25b) where γ is taken as γ = γT or γ = γD

and varies within the ranges (4.21a). Expressions (4.25b) and (4.20a) yield

V Tg /Vs =
√

3
4 (3−

√
1− 8 tan2ψ∗ ) cos2ψ∗−1 /

√
2 , (4.27a)

V Dg /Vs =
√

3
4 (3 +

√
1− 8 tan2ψ∗ ) cos2ψ∗−1 /

√
2 . (4.27b)

These expressions determine the group velocities V Tg and V Dg of the trans-
verse and divergent waves found at a ray angle ψ∗ within the Kelvin wake.
Expressions (4.27) yield

V Tg = Vs/2 and V Dg = Vs at ψ∗= 0 , (4.28a)

V Tg = V Dg = V Cg = Vs/
√

2 at ψ∗= ±ψK , (4.28b)

1/2 ≤ V Tg /Vs ≤ 1/
√

2 ≤ V Dg /Vs ≤ 1 for − ψK≤ ψ∗≤ ψK . (4.28c)

Thus, one has 1/2 ≤ Vg/Vs ≤ 1. The speed-scaled group velocities V Tg /Vs
and V Dg /Vs given by (4.27) are depicted in Fig.4.4 for ray angles ψ∗ within
the positive half of the Kelvin wake (4.16).
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Chapter 5

Free waves made by a ship
that advances through
regular waves

The analysis of free waves expounded in chapters 2 and 3 for a broad class
of dispersive plane waves is applied in this chapter to the particular case
of a ship that steadily advances through regular waves in deep water. This
application provides a vivid illustration of the fact that a simple dispersion
relation can define multiple dispersion curves and a surprisingly rich set of
wave patterns that involve widely different waves. [5,1].

5.1 Dispersion curves

The free waves created by a ship that steadily advances through deep-water
regular waves are determined by the dispersion relation (2.9), i.e.

∆(f, α, β ;F ) ≡ (f+Fα)2−k ≡ (f+Fk cosγ)2−k = 0 (5.1a)

where k ≡
√
α2+β2 . The corresponding dispersion curves ∆ = 0 are sym-

metric about the axis β=0, and can be expressed in the Cartesian form

β(α ; f,F ) = ±
√

(f+Fα)4− α2 . (5.1b)

The dispersion relations (5.1) yield

k/f2 = 1 and β/f2 = ±1 for α = 0 . (5.2)

Thus, the dispersion curves intersect the axis α = 0 at β = ±f2.
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Polar representations of the dispersion curves

The dispersion curves associated with the dispersion relation (5.1a) can be
expressed in the polar form

k =
1/2− τ cosγ ±

√
1/4− τ cosγ

F 2 cos2γ
=

(
√

1/4− τ cosγ ± 1/2)2

F 2 cos2γ
(5.3)

where τ denotes the parameter defined by (1.32) as

τ ≡ Ff = Vs ω/g . (5.4)

The wavenumber (5.3) is not a real number if 1/4 < τ cosγ, i.e. if

− γτ < γ < γτ where γτ ≡ arccos[(1/4)/τ ] and 1/4 ≤ τ . (5.5)

The ± branches of the polar representation (5.3) can be expressed as

kV ≡ F 2k = (
√

1/4− τ cosγ + 1/2)2/cos2γ and (5.6a)

kω ≡ k/f2 = 1/(
√

1/4− τ cosγ +1/2)2 (5.6b)

where kω ≡Kg/ω2 ≡ k/f2 and kV ≡KV 2
s /g ≡F 2k (5.7)

are the frequency-scaled or the speed-scaled nondimensional wavenumbers
defined by (1.33a-b).

The dispersion curves defined by (5.6) intersect the axis β = 0 for γ = 0
and γ = π. The wavenumbers corresponding to these intersection points are

F 2k+
o = (

√
1/4− τ + 1/2)2

F 2k−o = (
√

1/4 + τ + 1/2)2

k+
i /f

2 = 1/(
√

1/4− τ + 1/2)2

k−i /f
2 = 1/(

√
1/4 + τ + 1/2)2

 (5.8)

where k+
o and k+

i correspond to γ = 0, and k−o and k−i correspond to γ = π.
The intersection wavenumbers k−o and k−i are real for every value of 0 ≤ τ ,
but the wavenumbers k+

o and k+
i are only real if τ ≤ 1/4. Expressions (5.8)

yield

k±i /f
2 = 1 and F 2k±o = 1 if τ = 0 , (5.9a)

k+
i

f2
= 4 =

k+
o

f2
,
k−i
f2

=
4

(
√

2 +1)2
≈ 0.7 ,

k−o
f2

= 4(
√

2 +1)2 ≈ 23

if τ = 1/4 . (5.9b)
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Dispersion curves for τ ≤ 1/4

If τ ≤ 1/4 , the condition τ cosγ ≤ 1/4 that ensures that the wavenumbers
defined by (5.6) are real is always satisfied, and the polar representations
(5.6) yield the three dispersion curves

kV = (
√

1/4− τ cosγ +1/2)2/cos2γ where π/2<γ < 3π/2 , (5.10a)

kω = 1/(
√

1/4− τ cosγ +1/2)2 where 0 ≤ γ ≤ 2π , (5.10b)

kV = (
√

1/4− τ cosγ +1/2)2/cos2γ where − π/2<γ <π/2 . (5.10c)

These dispersion curves are located within the three regions

−∞ < α ≤ −k−o , −k−i ≤ α ≤ k+
i , k+

o ≤ α <∞ if τ ≤ 1/4 . (5.11)

The dispersion curve in the inner region −k−i ≤ α ≤ k+
i in (5.11) is called

‘inner dispersion curve’ and is denoted as I hereafter. The dispersion curves
in the two outer regions −∞ < α ≤ −k−o and k+

o ≤ α <∞ are similarly
called ‘outer dispersion curves’ and are denoted as O− or O+.

In the special case τ = 0, the dispersion curve defined by (5.10b) becomes

kω ≡ k/f2 = 1 (5.12a)

in agreement with the dispersion circle (2.10) associated with diffraction-
radiation of regular waves by an offshore structure, and the dispersion curves
(5.10c) are symmetric about the axis α = 0 and given by

kV ≡ F 2k = 1/cos2γ where − π ≤ γ ≤ π (5.12b)

in agreement with the dispersion curves (4.4) associated with ship waves in
calm deep water.

In the special case τ = 1/4, one has k+
i = k+

o = 4f2 in accordance
with (5.9b). The dispersion curves in the regions −k−i ≤ α ≤ k+

i and
k+
o ≤ α <∞ are then connected at α = 4f2 in this special case. Thus, the

dispersion curves are located in the regions

−∞ < α ≤ −k−o and − k−i ≤ α <∞ if τ = 1/4 . (5.13)

The (closed) inner dispersion curve I defined by (5.10b) and the two
(open) dispersion curves O− and O+ defined by (5.10a) and (5.10c) are
depicted in Fig.5.1 for τ = 0.2 and τ = 1/4 in the Strouhal-scaled Fourier
plane (αS, βS) ≡ (Kx,Ky)Vs/ω associated with the representation (5.18)
given further on. Fig.5.1 shows that the inner dispersion curve I and the
outer dispersion curve O+ are connected at αS = 1 if τ = 1/4, in accor-
dance with (5.13) and the relation αS = τ αω. Fig.5.1 also illustrates the
notable feature that the wavenumbers k−i and k+

i associated with the inner
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Figure 5.1: This figure depicts the closed inner dispersion curve I and the
two dispersion curves O− and O+ defined by the dispersion relation (5.1) in
the regime τ < 1/4. These three dispersion curves are depicted for τ = 0.2
and τ = 0.25 in the Strouhal-scaled Fourier plane (αS, βS) ≡ (Kx,Ky)Vs/ω.
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Figure 5.2: This figure depicts the dispersion curves defined by (5.10) in
the regime 0 ≤ τ ≤ 1/4. The figure on the left side depicts the outer
dispersion curves O− and O+ in the speed-scaled Fourier plane (αV, βV ) ≡
(Kx,Ky)V 2

s /g and the figure on the right depicts the inner dispersion curve
I in the frequency-scaled Fourier plane (αω, βω) ≡ (Kx,Ky)g/ω2.

dispersion curve I are significantly smaller than the wavenumbers k−o and
k+
o associated with the outer dispersion curves O− and O+ for τ < 0.2.
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The inner and outer dispersion curves defined by the dispersion relation
(5.1) in the regime τ ≤ 1/4 are further considered in Fig.5.2. Specifically,
the left half of Fig.5.2 depicts the outer dispersion curves O− and O+ in the
speed-scaled Fourier plane (αV, βV ) ≡ (Kx,Ky)V 2

s /g for τ = 0, 0.1, 0.2 and
1/4, and the right half of the figure depicts the inner dispersion curve I in
the frequency-scaled Fourier plane (αω, βω) ≡ (Kx,Ky)g/ω2 for the same
values of τ within the range 0 ≤ τ ≤ 1/4 .

The polar representations (5.10) of the inner dispersion curve I and the
outer dispersion curves O− and O+ are well suited to represent the flow
created by an arbitrary distribution of singularities (sources or dipoles) in
the regime τ < 1/4 .

Dispersion curves for 1/4 < τ

For 1/4 ≤ τ and −π/2 < γ < π/2 , the condition τ cosγ ≤ 1/4 that en-
sures that the wavenumbers defined by (5.6) are real is not satisfied if (5.5)
holds. The constraint (5.5) is irrelevant for the dispersion curve defined by
(5.10a) but restricts the ranges of the polar angle γ in expressions (5.10b-c).
Specifically, the polar representations (5.10) become

kV = (
√

1/4− τ cosγ +1/2)2/cos2γ where π/2<γ < 3π/2 , (5.14a)

kω = 1/(
√

1/4− τ cosγ +1/2)2 where γτ ≤ γ ≤ 2π− γτ , (5.14b)

kV = (
√

1/4− τ cosγ +1/2)2/cos2γ where

(−π/2 < γ ≤ −γτ ) ∪ (γτ ≤ γ < π/2) . (5.14c)

These dispersion curves are located within the three regions

−∞ < α ≤ −k−o , −k−i ≤ α ≤ αio , αio ≤ α <∞ if 1/4 ≤ τ (5.15a)

where αio and the corresponding values of β and k are given by

αio = f2/τ = f/F , βio = ±f2
√

16−1/τ2 , kio = 4f2 . (5.15b)

The two regions −k−i ≤ α ≤ αio and αio ≤ α <∞ are contiguous. The
inner dispersion curve I located in the region −k−i ≤ α ≤ αio and the
outer dispersion curve O+ located in the region αio ≤ α < ∞ are then
two portions of the continuous dispersion curve I ∪ O+, denoted as IO+

hereafter, that is located in the region −k−i ≤ α <∞ . One then has only
two dispersion curves O− and IO+ located in the regions

−∞ < α ≤ −k−o and − k−i ≤ α <∞ if 1/4 ≤ τ . (5.15c)

The point (αio , βio) that separates the connected dispersion curves I
and O+ in the two contiguous regions −k−i ≤ α ≤ αio and αio ≤ α <∞ in
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Figure 5.3: This figure depicts the inner dispersion curves I located in the
region −k−i ≤ α ≤ αio in (5.15a) and defined by (5.14b) in the frequency-
scaled Fourier plane (αω, βω) ≡ (Kx,Ky)g/ω2 for τ = 0.3, 0.5, 1 and 3.
The circle kω= 4 that separates the inner dispersion curve I and the outer
dispersion curve O+ in the three regions in (5.15a) associated with the
regime 1/4 ≤ τ is also depicted.

(5.15a) is located on the circle k = 4f2. One has

(αωio , β
ω
io) = (4 , 0) if τ = 1/4 and (αωio , β

ω
io)→ (0 ,±4) as τ →∞

where (αω, β ω ) ≡ (α, β )/f2. The circle kω = 4 is depicted in Fig.5.3, where
the dispersion curve I associated with the inner region −k−i ≤ α ≤ αio in
(5.15a) and defined by (5.14b) is also depicted for several values of 1/4 < τ .
Expressions (5.15b) and (5.8) show that one has kio = k−o if τ = 3/4 .

The polar representations (5.10) of the dispersion curves for τ ≤ 1/4
are identical to the polar representations (5.14) for 1/4 ≤ τ if γτ in (5.14)
is taken as γτ = 0 . Thus, the representations (5.14) can be used for every
value of τ if γτ is defined as

γτ ≡ 0 if τ ≤ 1/4 or γτ ≡ arccos[(1/4)/τ ] if 1/4 ≤ τ . (5.16)

The polar representations (5.14) can also be expressed in terms of the
Strouhal-scaled wavenumber kS defined by (1.33c) as

kS ≡KVs/ω . (5.17)
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Figure 5.4: This figure depicts the two dispersion curves O− (left side) and
IO+ (right side) defined by the dispersion relation (5.1) for τ = 0.4, 1, 3
in the Strouhal-scaled Fourier plane (αS, βS) ≡ (Kx,Ky)Vs/ω. The vertical
line αS = −1 is also shown.

Specifically, the relations F 2k = τ kS and k/f2 = kS/τ and expressions
(5.14) define kS(γ ; τ) via the polar representations

kS = (
√

1/4− τ cosγ +1/2)2/(τ cos2γ) where π/2<γ < 3π/2 , (5.18a)

kS = τ/(
√

1/4− τ cosγ +1/2)2 where γτ ≤ γ ≤ 2π− γτ , (5.18b)

kS = (
√

1/4− τ cosγ +1/2)2/(τ cos2γ)

where (−π/2 < γ ≤ −γτ ) ∪ (γτ ≤ γ < π/2) . (5.18c)

As was already noted and is illustrated in Fig.5.1, the wavenumbers k−i
and k+

i associated with the inner dispersion curve I are significantly smaller
than the wavenumbers k−o and k+

o that correspond to the outer dispersion
curves O− and O+ for small values of τ , i.e. in the regime τ ≤ τ ` where
τ ` ≈ 0.2 . Indeed, the frequency-scaling kω ≡Kg/ω2 and the speed-scaling
kV ≡KV 2

s /g are well suited to represent the inner dispersion curve I or the
outer dispersion curves O− and O+ in the regime τ ≤ 1/4, and these two
alternative scalings are used in Fig.5.2.

The Strouhal-scaling is well suited to represent the dispersion curves in
the regime 0.25 < τ , as is illustrated in Fig.5.4, and is particularly well
adapted for very large values of τ as is illustrated in Fig.5.5. Indeed, the
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Figure 5.5: Dispersion curves that correspond to τ = 1, 5, 10 and 20 in the
Strouhal-scaled Fourier plane (αS, βS) ≡ (Kx,Ky)Vs/ω . The vertical line
αS = −1 is also shown.

Strouhal-scaling is preferable to the frequency-scaling or the speed-scaling
for large values of τ ≥ τL with τL≈ 0.4 .

Regime 0.25 < τ ≤
√

2/27 ≈ 0.272

If τ ≤ 1/4 , Fig.5.1 and Fig.5.2 show that a constant-β line intersects the
outer dispersion curve O− at a single point, and also intersects the outer
dispersion curve O+ at a single point. If 1/4 ≤ τ , Fig.5.4 and Fig.5.5 show
that a constant-β line also intersects the outer dispersion curve O− at a
single point. However, a constant-β line can intersect the dispersion curve
IO+ at a single point or at three points, as can be observed in Fig.5.6 and
is now shown.

A constant-β line is tangent to the dispersion curve IO+ at a point where
∆ = 0 and ∆α = 0 . Expression (5.1a), where 0 < f+Fα for the dispersion
curve IO+, and expression (2.31c) for the derivative ∆α of the dispersion
function ∆ then yield

cosγ = (
√
k − f )/(Fk) = 2τ/(1− 2F 2k)

at a point where a constant-β line is tangent to the dispersion curve IO+.
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Figure 5.6: The figure on the left depicts the dispersion curves O− and IO+,
located in the regions −∞ < α ≤ −k−o and −k−i ≤ α <∞ in (5.15c), in the
Strouhal-scaled Fourier plane (αS, βS) ≡ (Kx,Ky)Vs/ω for 0.25 ≤ τ ≤ 0.4.
The figure on the right depicts the dispersion curve IO+ in the vicinity of
the origin of the frequency-scaled Fourier plane (αω, βω) ≡ (Kx,Ky)g/ω2

for five values of τ in the range 0.25 ≤ τ ≤ 0.4.

It follows that such a point corresponds to a root of the equation

τ4(kω)3− τ2(kω)2 + kω/4−1/4 = 0 where kω ≡ k/f2 (5.19)

is the frequency-scaled wavenumber. The discriminant of the cubic equation
(5.19) is given by D = (2− 27τ2)τ6/16. This cubic equation has three real
roots if 0 < D, i.e. if

τ <
√

2/27 ≈ 0.272 . (5.20)

Two of the three real roots correspond to two points where ∆ = 0 and
∆α = 0 . Thus, a constant-β line intersects the dispersion curve IO+ at a
single point if

√
2/27 < τ or at three points if 1/4 < τ <

√
2/27 as is

illustrated in the figure on the right half of Fig.5.6.

Cartesian representation of the two outer dispersion curves
for 0 ≤ τ < 1/4

The closed dispersion curve in the inner region−k−i ≤ α≤ k+
i is conveniently

represented in the polar form (5.10b). The two open dispersion curves in
the outer regions −∞ < α ≤ −k−o and k+

o ≤ α <∞ can also be represented
in the polar form (5.10a) and (5.10c). However, in the special case f = 0,
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these dispersion curves are conveniently expressed in the Cartesian form

F 2α = ±
√

1/2 +
√

1/4 + (F 2β)2 where −∞ < β <∞ . (5.21)

This Cartesian representation of the outer dispersion curves O± is now
extended to the more general case 0 ≤ τ < 1/4 .

Expression (5.1a) for the dispersion function ∆ shows that the dispersion
curves ∆ = 0 are roots of the quartic equation

s4− s2 + 2τ s− t2 = 0 where (5.22a)

s ≡F 2α+ τ , t2≡ τ2 + v2 and v ≡ F 2β (5.22b)

Addition and subtraction of the term b s2 + b2/4 in (5.22a) yields

(s2 + b/2)2− (
√
b+1 s−

√
b2/4 + t2 )2 = 0 (5.23)

if b satisfies the equation

b3 + b2 + 4 t2b+ 4 v2 = 0 . (5.24)

The three roots of the cubic equation (5.24) are given by

b1 = −1/3− (S+ T ) (5.25a)

b2 = −1/3 +(S+ T )/2− i (S− T )
√

3/2 (5.25b)

b3 = −1/3 +(S+ T )/2 + i (S− T )
√

3/2 where

S = (
√
D −R)1/3 and T = −Q/S with D = Q3+R2 (5.25c)

Q =
4τ2 + (2F 2β)2−1/3

3
and R =

2τ2− (2F 2β)2−1/9

3
. (5.25d)

The root b1 is real and the roots b2 and b3 are complex conjugates if D > 0
and
√
D −R ≥ 0 . The root b2 is real and the roots b1 and b3 are complex

conjugates if D > 0 and
√
D −R < 0 . The three roots are real if D ≤ 0 .

The root b defined as

b =

{
b2 if Q3+R2 > 0 and

√
Q3+R2 −R < 0

b1 otherwise
(5.26)

is then real and is chosen. It can be verified that −1 ≤ b ≤ 0.

Expression (5.23) shows that the roots of (5.22) are given by the roots
of the two quadratic equations

s2 +
√
b+1 s +

(
b/2−

√
b2/4 + t2

)
= 0 (5.27a)

s2−
√
b+1 s +

(
b/2 +

√
b2/4 + t2

)
= 0 (5.27b)
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where t2 = v2 + τ2 in accordance with (5.22b). The quadratic equation
(5.27a) has two roots

s± = ±
√
δ/2−

√
1+ b/2 where (5.28a)

δ = 1− b+ 4
√
b2/4 + τ2 + (F 2β)2 (5.28b)

The two roots (5.28a) are real and correspond to the two outer dispersion
curves O+ and O− for τ < 1/4 .

Expressions (5.22b) and (5.28) then determine the two outer dispersion
curves O± as

F 2α±= ±
√

1− b
4

+
√
b2/4 + τ2 + (F 2β)2 −

√
1+ b

2
− τ (5.29)

where b is given by (5.26) with (5.25). The Cartesian representation (5.29)
of the dispersion curves in the regions −∞ < α ≤ −k−o and k+

o ≤ α <∞
agrees with the representation (5.21) in the limit f = 0, as is required to
obtain consistent representations of flows around ships steadily advancing
through regular waves or in calm water.

Cartesian representation of the dispersion curves for τL≈ 0.3 ≤ τ

In the regime
√

2/27 < τL≤ τ , a constant-β line intersects the dispersion
curve O− at a single point and similarly intersects the dispersion curve IO+

at a single point, as was just shown and is illustrated in Fig.5.4, Fig.5.5 and
Fig.5.6. The dispersion curves O− and IO+ can then be represented as

αS = αS−(βS ; τ) or αS = αS+(βS ; τ) (5.30)

where the Strouhal-scaling (1.33c) is used.

In the regime τL ≈ 0.3 ≤ τ now considered, expressions (5.25d) yield

Q3+R2 > 0 and
√
Q3+R2 −R > 0 .

The real root b of the cubic equation (5.24) is then given by b = b1 in
accordance with (5.26). Specifically, this root is defined by (5.25a) and
(5.25c) as

b = −1/3 + (
√
Q3 +R2 +R)1/3− (

√
Q3 +R2 −R)1/3 (5.31a)

where Q and R are defined by (5.25d). The functions αS = αS±(βS) in
(5.30) are given by equation (5.29), which can be expressed as

αS± = ±
√

1− b
4τ2

+
√
b2/(2τ)2 +1+ (βS)2/τ −

√
1+ b

2τ
−1 . (5.31b)

Expressions (5.30) and (5.31) provide Cartesian representations of the dis-
persion curves O− and IO+ for τL≤ τ with τL≈ 0.3.
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5.2 Fundamental wavenumbers

The wavenumber k that corresponds to points (α, β) of the outer dispersion
curve O− in (5.11) and (5.15a) varies within the range

k−o ≤ k <∞ for 0 ≤ τ <∞ . (5.32a)

Similarly, the wavenumber k associated with the inner dispersion curve I in
(5.11) and (5.15a) varies within the ranges

k−i ≤ k < k+
i for 0 ≤ τ < 1/4 , (5.32b)

k−i ≤ k ≤ kio for 1/4 ≤ τ <∞ , (5.32c)

Finally, the wavenumber associated with the outer dispersion curves O+ in
(5.11) and (5.15a) varies within the ranges

k+
o ≤ k <∞ for 0 ≤ τ < 1/4 , (5.32d)

kio ≤ k ≤∞ for 1/4 ≤ τ <∞ . (5.32e)

The five wavenumbers k−o , k
−
i , k

+
i , k

+
o and αio are reference wavenumbers

for the inner and outer dispersion curves located in the regions (5.11) and
(5.15a). These five basic wavenumbers are now considered. Expressions
(5.8), (5.15b) and the relation kF/f = kS yield

kSio = 4τ and


(kS)−o = (

√
1/4 + τ + 1/2 )2/τ

(kS)+
o = (

√
1/4− τ + 1/2 )2/τ

(kS)−i = τ/(
√

1/4 + τ + 1/2 )2

(kS)+
i = τ/(

√
1/4− τ + 1/2 )2

 . (5.33)

Expressions (5.33) yield
(kS)+

i = 1 = (kS)+
o

(kS)−i = 1/(
√

2 +1)2≈ 0.17

(kS)−o = (
√

2 +1)2≈ 5.83

 if τ = 1/4 , (5.34a)

(kS)−i = 1/3 and (kS)−o = 3 if τ = 3/4 . (5.34b)

Expressions (5.33) also show that one has

(kS)±i ∼ τ and (kS)±o ∼ 1/τ as τ → 0 , (5.35a)

(kS)−o ∼ 1 ∼ (kS)−i as τ →∞ . (5.35b)

The approximations (5.35a) yield k−i ∼ k+
i and k−o ∼ k+

o as τ → 0, and

k±i /k
±
o ∼ τ2 as τ → 0 . (5.36)
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Figure 5.7: This figure depicts the speed-scaled wavenumbers F 2k−o and
F 2k+

o (top), the frequency-scaled wavenumbers k−i /f
2 and k+

i /f
2 (center),

and the Strouhal-scaled wavenumbers k±i F/f, k
±
o F/f and kioF/f = 4τ (bot-

tom).
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Figure 5.8: This figure depicts the Strouhal-scaled wavenumbers αS that
correspond to the boundaries α = −k−o , −k−i , k+

i , k
+
o , αio of the regions

that contain the dispersion curves associated with a ship steadily advancing
through regular waves in deep water.

Thus, the inner wavenumbers k−i and k+
i are much smaller than the outer

wavenumbers k−o and k+
o for small values of τ .

The basic wavenumbers k−i , k+
i , k−o , k+

o given by (5.33) are depicted in
Fig.5.7 for 0 ≤ τ ≤ 1/4 . This figure also depicts the wavenumbers k−i , k

−
o

and kio for 1/4 ≤ τ <∞.
Fig.5.7 shows that a ship that advances through regular waves creates

waves of widely different lengths, notably for τ < 0.2. Indeed, the wavenum-
bers k±i and k±o (and the corresponding wavelengths λ = 2π/k) can differ
significantly from the wavenumbers k/f2 = 1 or F 2k = 1 that correspond
to the limit F = 0 or the limit f = 0 . The wavenumbers (kS)+

o and (kS)−o
decrease, but (kS)+

i and (kS)−i increase, as τ increases from 0 to 1/4.

Fig.5.7 also shows that k−i is the smallest wavenumber. Thus, a ship
that advances through waves creates waves with wavenumbers k−i ≤ k and
wavelengths λ ≤ 2π/k−i .

Moreover, Fig.5.7 shows that one has
k−i < k+

i ≤ k+
o < k−o

k−i < kio ≤ k−o
k−i < k−o ≤ kio

 for


0 ≤ τ ≤ 1/4

1/4 ≤ τ ≤ 3/4

3/4 ≤ τ <∞

 . (5.37)

The dispersion curves are contained within the regions defined by (5.11)

82



and (5.15a) as

−∞ < α ≤ −k−o , −k−i ≤ α ≤ k+
i , k+

o ≤ α <∞ if τ ≤ 1/4

−∞ < α ≤ −k−o , −k−i ≤ α ≤ αio , αio ≤ α <∞ if 1/4 ≤ τ

where k±o and k±i are given by (5.8) and αio is defined by (5.15b). The
Strouhal-scaled wavenumbers αS that correspond to α = −k−o , −k−i , k+

i ,
k+
o and αio are depicted in Fig.5.8 for 0 ≤ τ <∞ .

5.3 Limits τ → 0 or τ →∞

The dispersion curves associated with ship motions in regular waves and the
related fundamental wavenumbers are now further considered in the limit
τ → 0 and the limit τ →∞.

Limit τ → 0

Expressions (5.8) yield the asymptotic approximations

F 2k+
o ∼ 1− 2τ − τ2 and F 2k−o ∼ 1+ 2τ − τ2 as τ → 0 , (5.38a)

k+
i /f

2∼ 1+ 2τ + 5τ2 and k−i /f
2∼ 1− 2τ + 5τ2 as τ → 0 . (5.38b)

These approximations yield k±i ∼ τ2k±o as τ → 0 in agreement with (5.36).
Moreover, as is noted in (5.12), expressions (5.10a) and (5.10c) both become
F 2k = 1/cos2γ and expression (5.10b) becomes k/f2 = 1 in the limit τ = 0,
in agreement with the dispersion relations (2.10) and (4.4) associated with
wave diffraction-radiation by offshore structures and steady ship waves.

Indeed, for 0 ≤ τ ≤ 0.1, the dispersion curve associated with the inner
region −k−i ≤ α ≤ k+

i in (5.11) does not differ greatly from the dispersion
circle k = f2 that corresponds to the special case F = 0 and offshore
structures in regular waves, as can be observed in Fig.5.2. Similarly, for
0 ≤ τ ≤ 0.1, the dispersion curves associated with the two outer regions
α ≤ −k−o and k+

o ≤ α in (5.11) do not differ greatly from the dispersion
curves associated with the special case f = 0 and steady ship waves, as can
also be observed in Fig.5.2.

The dispersion curve in the inner region −k−i ≤ α ≤ k+
i in (5.11) corre-

sponds to the limit F� 1 with f = O(1) that is associated with a ship that
advances through regular waves at low speed or an offshore structure in a
uniform current, for which the ship creates short waves with O(F 2) wave-
lengths. The dispersion curves in the outer regions α ≤ −k−o and k+

o ≤ α
correspond to the limit f� 1 with F = O(1) associated with a ship that
advances through long (low-frequency) waves.
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Thus, the inner and outer dispersion curves in (5.11) are associated with
a decomposition of the limit fF→ 0 into the two limits

F→ 0 with f = O(1) and f→ 0 with F = O(1) .

The dispersion relation (5.1a) can be expressed in the alternative forms

(1+ τ kω cosγ)2 = kω where kω ≡ k/f2 , (5.39a)

(kV cosγ + τ )2 = kV where kV ≡ F 2k , (5.39b)

associated with the frequency-scaled or speed-scaled wavenumbers kω or
kV that are appropriate for an offshore structure in regular waves or a ship
steadily advancing in calm water, and are related to the dispersion curves
defined by (5.6a) and (5.6b).

The dispersion relations (5.39) can be expressed as

κ−1− 2τ κ cosγ − τ2κ2cos2γ = 0 where κ ≡ k/f2 , (5.40a)

κ− κ2cos2γ − 2τ κ cosγ − τ2 = 0 where κ ≡ F 2k , (5.40b)

respectively. The dispersion curves defined by these dispersion relations can
be studied in the limit τ → 0 via the asymptotic expansion

κ ∼ κ0 + τ κ1 + τ2κ2 + τ3κ3 + · · ·
By substituting this expansion into the dispersion relations (5.40) and
grouping the expressions that are O(1) , O(τ), O(τ2), . . . one obtains

k/f2∼ 1+ 2µ+ 5µ2 +14µ3 + 42µ4 + 132µ5 + · · · (5.41a)

F 2k cos2γ ∼ 1− 2µ− µ2−2µ3− 5µ4 −14µ5 + · · · (5.41b)

as µ ≡ τ cosγ → 0 .

The asymptotic approximation (5.41a) , where −π ≤ γ ≤ π , defines the
inner dispersion curve associated with the limit F → 0 with f = O(1)
that corresponds to wave diffraction-radiation at low forward speed. The
approximation (5.41b) defines the outer dispersion curves corresponding to
diffraction-radiation of long waves and the limit f→ 0 with F = O(1). The
ranges −π/2 < γ < π/2 and π/2 < γ < 3π/2 in (5.41b) define two distinct
dispersion curves.

Limit τ →∞

The asymptotic approximations (5.35b) show that Strouhal scaling of the
Fourier plane is appropriate for large values of τ associated with diffraction-
radiation of regular waves in the high-frequency and/or high-speed regimes.
Indeed, expressions (5.33) yield

(kS)−i ∼ 1− 1√
τ

+
1

2τ
and (kS)−o ∼ 1 +

1√
τ

+
1

2τ
as τ →∞ . (5.42)
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The dispersion relation (5.1a) can be expressed as

(1+ αS)2 ≡ (1+ kScosγ)2 = kS/τ . (5.43)

This dispersion relation yields the dispersion curves αS = −1 in the limit
τ →∞ . The dispersion curves defined by (5.43) are depicted in Fig.5.5 for
several large values of τ in the Strouhal-scaled Fourier plane appropriate in
the high-speed and/or high-frequency regime.

5.4 Wave patterns

The far-field wave patterns associated with the dispersion curves analyzed
in the previous section are now considered.

Analytical representation of wave patterns

The far-field wave pattern that corresponds to a dispersion function ∆ is
determined from ∆ via the general parametric equations (3.18), where σ∆

is given by (2.53c) for the dispersive waves considered in this chapter. The
patterns of far-field waves created by a ship that steadily advances through
regular waves are then determined by the parametric equations

hn ≡
{
xn

yn

}
=

2nπσ∆

k∆k

{
∆α

∆β

}
where σ∆ = sign(αio− α) , (5.44a)

expression (5.15b) for αio was used and ∆ is the dispersion function (2.9).
The derivatives ∆α , ∆β and ∆k of ∆ in (5.44a) are given by (2.31c) as

∆α = 2F (f+F k cosγ)−cosγ

∆β = − sinγ

∆k = 2F (f+F k cosγ) cosγ −1

 (5.44b)

where the wavenumber k is defined in terms of the wave-propagation angle
γ via the dispersion relation (5.1a).

The three regions (5.11) and (5.15a) associated with the inner and outer
dispersion curves for τ ≤ 1/4 or 1/4 ≤ τ and Fig.5.8 show that the sign-
function σ∆ in (5.44a) is given by

σ∆ = 1 in −∞ < α ≤ −k−o for all values of τ , (5.45a)

σ∆ = 1 in

{−k−i ≤ α ≤ k+
i for τ ≤ 1/4

−k−i ≤ α < αio for 1/4 ≤ τ

}
, (5.45b)

σ∆ = −1 in

{
k+
o ≤ α <∞ for τ ≤ 1/4

αio ≤ α <∞ for 1/4 ≤ τ

}
. (5.45c)

85



The parametric representation (5.44) of the wave patterns yields the alter-
native representations{

xωn
yωn

}
=

2nπσ∆/kω

1− 2τ (1+ τ kω cosγ) cosγ

{
cosγ − 2τ (1+ τ kω cosγ)

sinγ

}
,

(5.46a){
xVn
yVn

}
=

2nπσ∆/kV

2(τ + kV cosγ) cosγ −1

{
2(τ + kV cosγ)− cosγ

− sinγ

}
, (5.46b){

xSn
ySn

}
=

2nπσ∆/kS

2τ (1+ kS cosγ) cosγ −1

{
2τ (1+ kS cosγ)− cosγ

− sinγ

}
(5.46c)

in terms of the frequency-scaling, the speed-scaling or the Strouhal-scaling
defined by (1.33).

The wave patterns that correspond to the inner and outer dispersion
curves located in the regions (5.11) and (5.15a) are then determined by the
alternative parametric equations (5.46) with expressions (5.45) for the sign
function σ∆ and the corresponding alternative polar representations (5.10),
(5.14), (5.18) of the dispersion curves. These alternative representations
of the dispersion curves and the related wave patterns correspond to the
alternative scalings defined by (1.33) associated with the alternative choices

Lr = g/ω2 , Lr = V 2
s /g , Lr = Vs/ω (5.47)

of reference length Lr .

Wave patterns for τ ≤ 1/4

The frequency-scaled parametric representation (5.46a) is best suited to
represent the waves associated with the dispersion curve I defined by (5.10b)
and located in the inner region −k−i ≤ α ≤ k+

i in (5.11) for τ ≤ 1/4 .
These waves, depicted in Fig.5.9 for several values of τ within the range
0 ≤ τ ≤ 1/4 , form a set of roughly circular waves, called ‘ring waves’
hereafter. These ring waves are concentric circular waves in the limit τ = 0 .

The speed-scaled parametric representation (5.46b) is best suited to rep-
resent the waves associated with the outer dispersion curves O− and O+

that are defined by (5.10a) and (5.10c) and are located in the two outer
regions −∞ < α ≤ −k−o and k+

o ≤ α < ∞ in (5.11) for τ ≤ 1/4 . These
two wave patterns are depicted in Fig.5.10 for several values of τ within the
range 0 ≤ τ ≤ 1/4 .

The wave patterns depicted in Fig.5.10 are qualitatively similar to the
Kelvin wake of a ship advancing in calm water considered in chapter 4. In
fact, these waves contain transverse and divergent waves inside the wedges
formed by cusps of the wave patterns. The cusp angles of the two wave
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Figure 5.9: Frequency-scaled ring waves associated with the inner dispersion
curve I in the region −k−i ≤ α ≤ k+

i for τ = 0, 0.15, 0.2 and 0.25.

patterns, called ‘inner V waves’ and ‘outer V waves’ hereafter, depicted in
Fig.5.10 vary with τ, as is considered further on. These inner and outer V
waves are associated with the dispersion curves O− or O+ located in the
outer regions −∞ < α ≤ −k−o or k+

o ≤ α <∞, respectively, in (5.11).

Wave patterns for 1/4 ≤ τ

The inner V waves associated with the outer dispersion curve O− and the
region −∞ < α ≤ −k−o in (5.11) and (5.15a) exist in the regime τ ≤ 1/4
considered in Fig.5.10 and also exist in the regime 1/4 ≤ τ . The patterns
of inner V waves are depicted in Fig.5.11 for several values of τ within the
range 0 ≤ τ ≤ 1. This figure shows that the inner V waves are qualitatively
similar for 1/4 ≤ τ and τ < 1/4 . Fig.5.11 also shows that the cusp angle,
denoted as ψVi , of the inner V waves decreases as τ increases and is smaller
than the Kelvin angle ψK≈ 19◦28′, which corresponds to the limit τ = 0.

In addition to the inner V waves associated with the outer dispersion
curve O− and the region −∞ < α ≤ −k−o in (5.15a), a ship that advances
through regular waves at 1/4 < τ creates two sets of waves that correspond
to the inner dispersion curve I and the outer dispersion curve O+ associated
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Figure 5.10: Speed-scaled inner and outer V waves associated with the
outer dispersion curves O− and O+ in the two regions −∞ < α ≤ −k−o and
k+
o ≤ α <∞ for τ = 0, 0.15, 0.2 and 0.25.
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Figure 5.11: Speed-scaled inner V waves associated with the outer dispersion
curve O− in the region −∞ < α ≤ −k−o for τ = 0, 0.25, 0.5 and 1.

with the contiguous regions −k−i ≤ α ≤ αio and αio ≤ α <∞ in (5.15a).
The waves associated with the dispersion curves I and O+ in the regime
1/4 ≤ τ form a pattern of partial (incomplete) rings and fan-like waves,
called ‘ring-fan waves’ hereafter, that are connected by cusps. These ring-
fan waves are depicted in Fig.5.12 for several values of 1/4 ≤ τ .

More precisely, the waves that correspond to the inner dispersion curve
I associated with the region −k−i ≤ α ≤ αio in (5.15a) form a set of ‘partial-
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Figure 5.12: Strouhal-scaled partial-ring and fan waves associated with the
dispersion curve IO+ in the two contiguous regions −k−i ≤ α ≤ αio and

αio ≤ α <∞ for τ = 0.25,
√

2/27 ≈ 0.272, 0.3 and 0.5.
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Figure 5.13: This figure depicts all the (Strouhal-scaled) wave patterns for
two values of τ within the regime τ < 0.25, for which three families of
waves—inner and outer V waves, and ring waves—exist. The inner and
outer V waves are much shorter than the ring waves and only exist behind
the ship, whereas the ring waves exist ahead and behind the ship.
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Figure 5.14: This figure depicts all the (Strouhal-scaled) wave patterns for
τ = 0.25− and τ = 0.25+.

-100 -50 0

-50

0

50

-100 -50 0

-50

0

50

Figure 5.15: This figure depicts all the (Strouhal-scaled) wave patterns for
two values of τ within the range 0.25 < τ ≤

√
2/27 ≈ 0.272 , for which

three families of waves—inner V waves, partial ring waves, and (inner and
outer) fan waves—exist. The inner V waves and the inner fan waves only
exist behind the ship, whereas the partial ring and the outer fan waves exist
ahead and behind the ship in the regime 0.25 < τ <

√
2/27 .

ring waves’ and ‘outer-fan waves’ that are connected at cusps. The waves
that correspond to the outer dispersion curve O+ associated with the region
αio ≤ α < ∞ in (5.15a) form a system of fan waves, called ‘inner-fan
waves’. The line that separates the ‘outer-fan waves’ and the ‘inner-fan
waves’ corresponds to the boundary α = αio between the inner region I and
the outer region O+ in (5.15a). This separation line is considered further
on.
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Figure 5.16: This figure depicts all the (Strouhal-scaled) wave patterns for
three values of τ within the regime

√
2/27 ≈ 0.272 < τ , for which no waves

exist ahead of the ship and three families of waves—inner V waves, partial
ring waves, and (inner and outer) fan waves—exist behind the ship.

Complete wave patterns for 0 ≤ τ

The complete wave patterns that correspond to the inner dispersion curve
I and the outer dispersion curves O− and O+ or IO+ are depicted in Figs
5.13-5.16. Specifically, Fig.5.13 depicts all the wave patterns created by
a ship that steadily advances through regular waves at two values of τ in
the regime τ < 0.25. Fig.5.14 similarly depicts all the wave patterns for
τ = 0.25− and τ = 0.25+. The wave patterns for two values of τ in the
regime 0.25 < τ ≤

√
2/27 ≈ 0.272 are depicted in Fig.5.15. Finally, Fig.5.16

depicts the wave patterns for three values of τ in the regime
√

2/27 < τ ,
for which no waves exist ahead of the ship.
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Figs 5.13-5.16 show that a ship that advances through regular waves
creates a rich set of diverse waves of widely different lengths, in accordance
with Fig.5.7. These four figures also show that the wave patterns vary
rapidly for values of τ in the vicinity of τ = 1/4.

5.5 Main features of wave patterns

The speed-scaled form of the dispersion relation (5.1b) yields

βV =
√

(αV+ τ )4− (αV )2 and kV = (αV+ τ)2 (5.48a)

where only the upper half βV ≥ 0 is considered due to symmetry. The
relations cosγ ≡ αV/kV and sinγ ≡ βV/kV and expression (5.46b) then
yield

tanψ∗≡ yVn
−xVn

=

√
(αV+ τ)4− (αV )2

2(αV+ τ)3− αV =

√
τ2(αS +1)4− (αS)2

2τ2(αS +1)3− αS (5.48b)

where ψ∗ is measured from the negative x axis (x < 0, y = 0) i.e. from the
ship track, which corresponds to ψ = π and ψ∗ = 0. The relations (5.48)
are used further on in section 5.5.

Basic components of wave patterns

The inner V waves depicted in Fig.5.11 consist of transverse and divergent
waves located inside a wedge formed by the cusps of the wave pattern. These
divergent / transverse waves are associated with the contiguous portions

Divergent inner V waves : −∞ < α ≤ −aciV (5.49a)

Transverse inner V waves : −aciV ≤ α ≤ −k−o (5.49b)

of the outer dispersion curve O− located in the region −∞ < α ≤ −k−o in
(5.11) and (5.15a). The wavenumber α = −aciV that separates the divergent
and transverse inner V waves and corresponds to the cusps of the pattern
of inner V waves is given further on.

The outer V waves, which exist if τ ≤ 1/4 and are depicted in Fig.5.10,
similarly consist of transverse and divergent waves, which are associated
with the contiguous portions

Transverse outer V waves : k+
o ≤ α ≤ acoV (5.50a)

Divergent outer V waves : acoV ≤ α <∞ (5.50b)

of the outer dispersion curve O+ located in the region k+
0 ≤ α <∞ in (5.11).

The wavenumber α = acoV that separates the transverse and divergent outer
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V waves and corresponds to the cusps of the pattern of outer V waves is
given further on.

Finally, the ring-fan waves, which exist if 1/4 ≤ τ and are depicted in
Fig.5.12, consist of partial-ring waves and outer and inner fan-like waves.
These waves, located inside a wedge formed by the cusps of the pattern of
ring-fan and outer-fan waves, are associated with the contiguous portions

Partial ring waves : − k−i ≤ α ≤ acrf (5.51a)

Outer fan waves : acrf ≤ α ≤ αio (5.51b)

Inner fan waves : αio ≤ α <∞ (5.51c)

of the dispersion curve IO+ located in the region −k−i ≤ α <∞ in (5.15c).

Fan-waves angle ψ∗f and asymptote lines

The inner and outer fan waves in (5.51) are separated by a straight line that
corresponds to α = αio , i.e. αV = τ . Expression (5.48b) then shows that
the angle, denoted as ψ∗f , of the line that divides the inner and outer fan
waves is given by

tanψ∗f = 1/
√

16τ2−1 where 1/4 ≤ τ . (5.52a)

This expression yields

90◦ ≥ ψ∗f > 0 as 1/4 ≤ τ <∞ (5.52b)

and shows that the angle of the fan waves decreases as τ increases, as is
illustrated in Fig.5.12 and Fig.5.16. These figures and Fig.5.15 show that
the lines ψ = ±ψ∗f are asymptote lines of the wave patterns, in accordance
with the analysis given in section 3.6. Specifically, expressions (5.44b) and
(5.15b) show that one has k∆k = 0 if α = αio and k = kio .

Cusps of wave patterns

The cusps of the wave patterns depicted in Figs.5.10–5.16 stem from in-
flection points of the dispersion curves defined by (5.48a). These inflection
points are determined by the inflection-point condition d2βV/d(αV )2 = 0,
in accordance with (3.24d). The dispersion relations (5.48a) then yield the
equivalent alternative quartic equations

2(αV+ τ)4− 3(αV )2 + 2τ αV− τ2 = 0 , (5.53a)

2τ2(αS+1)4− 3 (αS+1)2 + 8 (αS+1)−6 = 0 , (5.53b)
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Figure 5.17: This figure depicts the angle ψ∗f of the fan waves and the cusp
angles ψ∗iV , ψ

∗
oV and ψ∗rf of the inner V waves, the outer V waves and the

ring-fan waves.

in accordance with the relation αV = τ αS . The cusps of the wave patterns
created by a ship that advances through regular waves are then determined
by (5.48b) where αV are roots of the quartic equation (5.53).

The angle, denoted as ψ∗iV , of the cusps of the inner V waves corresponds
to the root αV of (5.53) that is located in the region −∞ < α ≤ −k−o in
(5.11) if τ ≤ 1/4 or (5.15a) if 1/4 ≤ τ . Similarly, the angle ψ∗oV of the
cusps of the outer V waves, which exist if τ ≤ 1/4, corresponds to the root
αV of equation (5.53) that is located within the region k+

o < α < ∞ in
(5.11). Finally, the angle ψ∗rf of the cusps of the ring-fan waves, which exist

if 1/4 ≤ τ , corresponds to the root αV of equation (5.53) that is located
within the region −k−i ≤ α ≤ αio in (5.15a).

Limits τ = 0 and τ →∞

In the special case τ = 0, equation (5.53) yields the roots αV = ±
√

3/2.

Expressions (5.48) then yield kV = 3/2, βV =
√

3/2, tanγ = ±1/
√

2 and
tanψ∗ = ±1/

√
8 , in agreement with expressions (4.22b), (4.17), and (4.16b)

obtained in chapter 4 for ship waves in calm deep water. Thus, the cusp
angles ψ∗iV and ψ∗oV of the inner and outer V waves are identical to the
Kelvin angle ψK in the limit τ → 0, i.e. one has

ψ∗iV → ψK and ψ∗oV → ψK as τ → 0 . (5.54)
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Figure 5.18: This figure depicts the Strouhal-scaled values of αS that are
associated with the regions where ring waves, inner and outer V waves,
partial-ring waves, and outer and inner fan waves exist.

Equation (5.53b) yields the root

(αS +1)2∼
√

3/τ as τ →∞ . (5.55a)

This asymptotic approximation and expressions (5.48a) and (5.48b) yield

αS→−1 , βS→
√

2 , kS→
√

3 , ψ∗→ 0 as τ →∞ . (5.55b)

Thus, the cusp angles ψ∗iV and ψ∗rf of the inner V waves and the ring-fan
waves vanish in the limit τ →∞, i.e. one has

ψ∗iV → 0 and ψ∗rf → 0 as τ →∞ . (5.56)

No waves ahead of a ship if τ >
√

2/27 ≈ 0.272

Expression (5.48b) shows that one has xn = 0 if

2(αV+ τ)3 = αV . (5.57)

This relation and the inflection-point condition (5.53a) are satisfied if

τ =
√

2/27 ≈ 0.272 and αS = 1/2 . (5.58)
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Figure 5.19: These figures depict the wavelengths λaftr (τ) and λforer (τ) of
the ring waves aft or fore of a ship that steadily advances through regular
waves at τ < 1/4, and also depict the wavelength λaftoV (τ) of the transverse
outer V waves aft of the ship and the corresponding wavelength λcuspoV (τ) at

the cusps for τ < 1/4. Moreover, the figures depict the wavelength λaftiV (τ)
of the transverse inner V waves aft of the ship and the wavelength λcuspiV (τ)
at the cusps of the pattern of inner V waves, which exist for 0 ≤ τ . Finally,
the figures depict the wavelength λaftrf (τ) of the transverse ring-fan waves

aft of the ship and the corresponding wavelength λcusprf (τ) at the cusps
of the pattern of ring-fan waves for 1/4 < τ . The top, middle, bottom
figures depict frequency-scaled wavenumbers λω = Λω2/Vs , speed-scaled
wavenumbers λV = Λg/V 2

s or Strouhal-scaled wavenumbers λS = Λω/V 2
s .
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The foregoing analysis shows that a ship that advances through regular
waves does not create waves ahead of the ship if τ >

√
2/27 ≈ 0.272, as

can be observed in Figs.5.12 and 5.15.

Special case τ = 1/4

The relations (5.57) and (5.53a) are also satisfied if

τ = 1/4 and αS = 1 .

However, Figs.5.12 and 5.14 show that waves exist ahead of a ship in this
case, for which one has both xn = 0 and yn = 0 in (5.48b).

In the special case τ = 1/4, the quartic equation (5.53) has two roots
αV = −7/4 and αV = 1/4. The root αV = −7/4 corresponds to the cusps of
the inner V waves for τ = 0.25, and the root αV = 1/4 corresponds to the
cusps of the outer V waves for τ = 0.25− or the cusps of the ring-fan waves
for τ = 0.25+. One then has

F 2aciV = 7/4 and F 2acoV = 1/4 =F 2acrf if τ = 1/4 (5.59)

in (5.49), (5.50) and (5.51). Expressions (5.59) and (5.48a) then yield

(αciV , β
c
iV , k

c
iV ) = (−7, 4

√
2 , 9)f/F and (5.60a)

(αcoV , β
c
oV , k

c
oV ) = (1, 0,1)f/F = (αcrf , β

c
rf , k

c
rf ) (5.60b)

in the special case τ = 1/4. Expressions (5.60a) and (5.48b) show that the
cusp angle ψ∗iV of the inner V waves is given by

ψ∗iV = arctan(
√

2/5) ≈ 15◦48′ if τ = 1/4 . (5.61)

The numerator and the denominator of expression (5.48b) both vanish
if τ = 1/4 and αV = 1/4. Expression (5.53b) yields

(16 τ2−1)A4 = 3− 8A+ 6A2−A4 where 2A ≡ αS +1 .

This equation shows that one has A = 1 if τ = 1/4 and

A ∼ 1− (4τ −1)1/3/21/3 as τ → 1/4

as can be verified via substitution. One then has

αS ∼ 1− 22/3(4 τ −1)1/3 as τ → 1/4 . (5.62)

Thus, one has αS→ 1 ∓ 0 as τ → 1/4 ± 0 . The asymptotic approximation
(5.62) and expression (5.48b) finally yield tanψ∗→ ∓

√
2 as τ → 1/4 ± 0 .

One then has

tanψ∗oV =
√

2 and ψ∗oV ≈ 54◦44′ if τ = 1/4 , (5.63a)

tanψ∗rf = −
√

2 and ψ∗rf ≈ 125◦16′ if τ = 1/4 . (5.63b)
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Moreover, one has

ψK≈ 19◦28′≤ ψ∗oV ≤ 54◦44′ as 0 ≤ τ ≤ 1/4 , (5.64a)

125◦16′ ≥ ψ∗rf > 0 as 1/4 ≤ τ <∞ . (5.64b)

Thus, the angle ψ∗oV of the wedge that contains the outer V waves increases
as τ increases within the range 0 ≤ τ ≤ 1/4 for which outer V waves exist,
and the angle ψ∗rf of the wedge that contains the ring-fan waves decreases
as τ increases within the range 1/4 ≤ τ for which these waves exist.

Cusp angles for all values of 0 ≤ τ

The roots of the quartic equation (5.53) are given by

αV = −
(√

1+ c ±
√

2− c+
√

(1− 2c)2 + 48τ2

)
/2− τ

where c ≡ (16τ2−1)1/3
[
(1+ 4τ)1/3 + (1− 4τ)1/3

]
/2 . (5.65)

In the special case τ = 1/4, one has c = 0 and the roots (5.65) become
αV = −7/4 and αV = 1/4 in accordance with (5.59). The wavenumbers aciV ,
acoV and acrf in (5.49), (5.50) and (5.51) are then given by

2F 2aciV =

√
2− c+

√
(1− 2c)2 + 48τ2 +

√
1+ c+ 2τ if 0 ≤ τ , (5.66a)

2F 2acoV =

√
2− c+

√
(1− 2c)2 + 48τ2−

√
1+ c− 2τ if τ ≤ 1/4 ,

(5.66b)

2F 2acrf =

√
2− c+

√
(1− 2c)2 + 48τ2−

√
1+ c− 2τ if 1/4 ≤ τ . (5.66c)

The corresponding wavenumbers F 2k = (F 2α+ τ)2 are then given by

2F
√
kciV =

√
2− c+

√
(1− 2c)2 + 48τ2 +

√
1+ c if 0 ≤ τ , (5.67a)

2F
√
kcoV =

√
2− c+

√
(1− 2c)2 + 48τ2 −

√
1+ c if τ ≤ 1/4 , (5.67b)

2F
√
kcrf =

√
2− c+

√
(1− 2c)2 + 48τ2 −

√
1+ c if 1/4 ≤ τ . (5.67c)

These expressions yield F 2kciV = 9/4 and F 2kcoV = 1/4 = F 2kcrf in the
special case τ = 1/4, in agreement with (5.60).

The cusp angles ψ∗iV (τ), ψ∗oV (τ) and ψ∗rf (τ) of the inner V waves, the
outer V waves or the ring-fan waves determined by expressions (5.48b) and
(5.65) are depicted in Fig.5.17, where the angle ψ∗f (τ) of the fan waves
defined by expression (5.52a) is also shown.
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Fig.5.18 depicts the functions α(τ) associated with the values of

α = (−aciV ,−k−o ,−k−i , k+
i , k

+
o , a

c
oV , a

c
rf , αio) (5.68)

that determine the boundaries of the regions where inner V waves, outer V
waves, partial-ring waves, outer fan waves and inner fan waves created by
a ship that steadily advances through deep-water regular waves exist.

Basic wavelengths

The wavelengths λ = 2π/k that correspond to the three wavenumbers kciV ,
kcoV and kcrf given by (5.67) and the four wavenumbers k±o and k±i are im-
portant reference wavelengths for the waves created by a ship that advances
through regular waves.

The wavelengths λaftr ≡ 2π/k−i and λforer ≡ 2π/k+
i are the wavelengths

of the longest or shortest waves along the path of a ship, aft or fore of the
ship, in the set of ring waves created if 0 ≤ τ ≤ 1/4 .

The wavelength λaftiV ≡ 2π/k−o corresponds to the longest transverse
waves in the set of inner V waves created aft of a ship (for every value of
τ ) and λcuspiV ≡ 2π/kciV is the wavelength at the cusps ψ∗ = ±ψ∗iV of the
pattern of inner V waves.

Similarly, λaftoV ≡ 2π/k+
o is the wavelength of the longest transverse waves

in the set of outer V waves created aft of a ship in the regime 0 ≤ τ ≤ 1/4
and λcuspoV ≡ 2π/kcoV is the wavelength at the cusps ψ∗ = ±ψ∗oV of the
pattern of outer V waves.

Finally, λaftrf ≡ 2π/k−i is the wavelength of the longest transverse waves,
aft of the ship, in the set of ring-fan waves that exist in the regime 1/4 < τ
and λcusprf ≡ 2π/kcrf is the wavelength at the cusps ψ∗ = ±ψ∗rf of the ring-
fan waves.

The wavelengths

λaftr (τ) , λforer (τ) , λaftiV (τ) , λcuspiV (τ) , λaftoV (τ) , λcuspoV (τ) , λaftrf (τ) , λcusprf (τ)

are depicted in Fig.5.19, where the alternative scalings

λω ≡ f2λ ≡ Λω2

g
, λV ≡ λ

F 2
≡ Λg

V 2
s

, λS =
λ

S
≡ αioλ ≡

Λω

Vs

are used.

Inconsequential short waves

The divergent inner and outer V waves associated with the regions

−∞ < α ≤ −aciV or acoV ≤ α <∞ (5.69a)
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in (5.49a) or (5.50b) contain short waves that may be influenced by non-
linearities or surface tension, and thus are unrealistic, or are too short to
have a significant influence on flow features (hydrodynamic coefficients, ship
motions and wave loads) of practical interest and are then inconsequential.
These inconsequential or unrealistic short waves correspond to subregions

−∞ < α ≤ −a∞iV or a∞oV ≤ α <∞ (5.69b)

of the regions (5.69a). The dispersion relation (5.48a) determines the
wavenumbers that correspond to α = −a∞iV and α = a∞oV as

F 2k∞iV = (−F 2a∞iV + τ )2 and F 2k∞oV = (F 2a∞oV + τ )2 . (5.70a)

Divergent waves that are significantly shorter than the waves at the cusps
of the inner and outer V waves are eliminated if the wavenumbers k∞iV and
k∞oV defined by (5.70a) are chosen as

k∞iV = CkciV and k∞oV = CkcoV (5.70b)

where kciV and kcoV are the wavenumbers of the waves at the cusps of the
inner or outer V waves and 1 ≤ C denotes a proportionality factor. Expres-
sions (5.70) yield

F 2a∞iV =
√
CF 2kciV + τ and F 2a∞oV =

√
CF 2kcoV − τ . (5.71a)

These expressions and expressions (5.66a) and (5.66b) yield the ranges

− a∞iV ≤ α ≤ −aciV or acoV ≤ α ≤ a∞oV (5.71b)

where divergent inner and outer V waves are meaningful. The choice C = 10
eliminates divergent waves that are 10 times shorter than the waves at the
cusps ψ∗ = ±ψ∗iV and ψ∗ = ±ψ∗oV of the inner or outer V waves.

Similarly, the range

acrf ≤ α ≤ a∞rf where F 2a∞rf =
√
CF 2kcrf − τ (5.72)

and C = 10 eliminates inner fan waves that are 10 times shorter than the
waves at the cusps ψ∗ = ±ψ∗rf of the ring-fan waves.
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Chapter 6

Green functions and
boundary-integral
flow representations

Chapters 2-5 consider far-field (free) waves and wave patterns for general
dispersion relations (in chapters 2 and 3) and for three specific dispersion
relations associated with diffraction-radiation of regular waves by offshore
structures in water of uniform finite depth (chapters 2 and 3) and waves
created by a ship that steadily advances in deep calm water (chapter 4)
or through regular waves (chapter 5). Near-field flows around ships and
offshore structures, determined by the near-field boundary-value problem
(1.35) stated in chapter 1, are considered hereafter in the book.

The boundary-value problem (1.35) can easily be solved, via the method
of Fourier transformation, to determine the flow created by a distribution of
pressure pF(ξ, η) and/or flux qF(ξ, η) applied at the free surface plane ζ = 0
if no ship or offshore structure is present and the body boundary condition
(1.35e) is therefore irrelevant. The method of Fourier transformation can
also be applied for a vessel modeled via a distribution of sources (or dipoles)
over a plane, as was done by Michell in 1898 in his classical theory of the
wave drag of a ship that steadily advances in calm water [6,1]. Analytical
solutions to the boundary-value problem (1.35) can also be obtained for
simple special body geometries. In particular, analytical solutions exist for
diffraction-radiation of regular waves by a circular cylinder, a sphere and
an ellipsoid. Analytical solutions have also been obtained for flows around
submerged spheroids that steadily advance in calm water or through regular
waves [6,2] .
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However, these analytical methods cannot be applied to general body
shapes. A method of solution that is useful for bodies of arbitrary shape,
required for practical applications, is expounded hereafter. This general
method of solution, invented by Green in 1828 [6,3] , is known as the Green-
function and boundary-integral method or, more precisely, as the method
of Green function and boundary-integral representation. Green’s method is
introduced in this chapter, and is applied in chapters 7-9 to the boundary-
value problem (1.35).

6.1 Basic mathematical identities

Green functions are associated with a classical identity, due to Green, that is
related to the fundamental ‘divergence theorem’. These two basic identities
are now considered.

The divergence theorem∫
D
dv(ξ)∇ξ ·V(ξ) =

∫
Σ

da(ξ) m(ξ) ·V(ξ) where ∇ξ ≡ (∂ξ , ∂η , ∂ζ ) (6.1)

states that the flux m ·V of a differentiable vector field V ≡ (V ξ, V η, V ζ)
through a surface Σ that encloses a finite three-dimensional region D is equal
to the integral of the divergence ∇ξ ·V of the vector V over the region D
inside the boundary surface Σ . The unit vector m ≡ (mξ,mη,mζ) normal
to the boundary surface Σ points outside the region D, and dv(ξ) and da(ξ)
denote the differential elements of volume or area at points ξ∈D or ξ∈Σ .

Green’s classical identity is obtained if the divergence theorem (6.1) is
applied to the particular vector field

V(ξ) ≡ ϕ(ξ)∇ξψ(ξ)− ψ(ξ)∇ξϕ(ξ) (6.2)

where ϕ(ξ) and ψ(ξ) are differentiable scalar functions of ξ∈(D∪Σ) . The
relations (6.1) and (6.2) yield∫

D
dv (ϕ∇2

ξ ψ − ψ∇
2
ξ ϕ) =

∫
Σ

dam ·(ϕ∇ξψ − ψ∇ξϕ) (6.3)

where ∇2
ξ ≡ ∇ξ ·∇ξ ≡ ∂

2
ξ + ∂2

η + ∂2
ζ is the Laplacian operator.

The functions ϕ and ψ in Green’s identity (6.3) are general differentiable
functions. The special case when the function ϕ satisfies Laplace’s equation

∇2
ξ ϕ = 0 for ξ∈D (6.4)

is considered hereafter. In this special case, Green’s identity (6.3) becomes∫
D
dv ϕ∇2

ξ ψ =

∫
Σ

da m · (ϕ∇ξψ − ψ∇ξϕ) . (6.5)
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An important identity is obtained if the function ψ(ξ) in (6.5) is chosen
as a function that is singular, in the particular way defined further on, at a
point ξ = x . To this end, a short mathematical detour is necessary to briefly
consider a useful special function, called the Dirac ‘delta’ function.

6.2 The Dirac delta function

Functions are ordinarily defined via a ‘point-wise relation’ in which function
values η ≡ f(ξ) are associated with corresponding values of ξ . This ordinary
definition of a function, based on a ξ → η ≡ f(ξ) relation, is useful even for
a function f(ξ) that is unbounded at a singular value x of ξ if the singularity
of f(ξ) at ξ = x is specified, e.g. if f(ξ) ∼ 1/

√
ξ − x or f(ξ) ∼ 1/(ξ − x)2.

However, this ordinary definition of a function is less useful for a more
general indeterminate singularity, as is the case for the delta function δ(ξ−x)
now considered. An alternative framework based on a class of functions,
called generalized functions [6,4] , can be used to define singular functions
like δ(ξ−x) . A generalized function is defined in an ‘integrated sense’, i.e. via
an integration process, rather than via a ‘point-wise relation’ ξ → η ≡ f(ξ)
as for ordinary functions.

Specifically, the singularity of the Dirac function δ(ξ − x) is defined via
the relation ∫ b

a

dξ δ(ξ − x)f(ξ) =

{
f(x)

0

}
if

{
a < x < b

x < a or b < x

}
(6.6)

where f(ξ) denotes an arbitrary continuous function.

The definition (6.6) can be extended to higher dimensions. For a three-
dimensional region D bounded by a surface Σ, Dirac’s relation (6.6) yields

∫
D
dv δ(ξ− x) δ(η − y) δ(ζ− z)f(ξ) =


f(x)

0

f(x)/2

 if


x∈D

x /∈(D∪Σ)

x∈Σ

 (6.7)

where dv ≡ dξ dη dζ , f(ξ)≡ f(ξ, η, ζ) and f(x)≡ f(x, y, z). The identity
(6.7) for the case when the point x is at the boundary surface Σ of the
region D assumes that the surface Σ is smooth at the point x .

In the special case f(ξ)≡ 1, the identities (6.7) become

∫
D
dξ dη dζ δ(ξ− x) δ(η − y) δ(ζ− z) =


1

0

1/2

 if


x∈D

x /∈(D∪Σ)

x∈Σ

 . (6.8)

These important identities are used further on.
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6.3 Basic boundary-integral relations

The arbitrary function ψ(ξ) in the relation (6.5) is now taken as a function

ψ(ξ) = G(ξ,x)

that satisfies the Poisson equation

∇2
ξ G(ξ,x) = δ(ξ− x) δ(η − y) δ(ζ− z) (6.9)

related to the Laplace equation (6.4). The Dirac relations (6.7) and Green’s
identity (6.5) yield the three complementary relations∫

Σ

da (ϕ m ·∇ξG−Gm ·∇ξϕ) = ϕ(x) if x∈D , (6.10a)∫
Σ

da (ϕ m ·∇ξG−Gm ·∇ξϕ) = ϕ(x)/2 if x∈Σ , (6.10b)∫
Σ

da (ϕ m ·∇ξG−Gm ·∇ξϕ) = 0 if x /∈(D∪Σ) . (6.10c)

The notation φ ≡ ϕ(x) is used further on for shortness.

Expression (6.10a) explicitly determines the function φ ≡ ϕ(x) at a
point x within the three-dimensional region D in terms of the values of the
function ϕ ≡ ϕ(ξ) and its normal derivative m·∇ξϕ at the boundary surface

Σ . This relation therefore provides a boundary-integral representation of the
function φ ≡ ϕ(x) . The identity (6.10b) only involves the function ϕ and
its normal derivative m · ∇ξϕ at the surface Σ , and therefore provides a

boundary-integral equation that determines ϕ at Σ if m · ∇ξϕ is specified

(known) at the boundary surface Σ .

The boundary-integral relations (6.10a) and (6.10b) yield a space reduc-
tion from a three-dimensional region D to the two-dimensional boundary
surface Σ that encloses D. This

3D regionD =⇒ 2D boundary surface Σ

reduction is made possible by the relation (6.9) satisfied by the function
G, which is called a Green function. The boundary surface Σ in Green’s
boundary-integral relations (6.10) is general. The general relations (6.10)
and the related Green function G can then be used to solve 3D boundary-
value problems for general geometries, notably for the hull surfaces ΣH of
offshore structures and ships that are of primary interest in this book.
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6.4 Free-space and general Green functions

Free-space Green function

The divergence theorem (6.1) can be applied to the vector field∇ξG and the

region ∆ inside an arbitrary boundary surface Σ . The divergence theorem
(6.1), the Poisson equation (6.9) and the Dirac relations (6.8) yield∫

Σ

da m ·∇ξG =

∫
∆

dv∇ξ ·∇ξG ≡
∫

∆

dv∇2
ξ G

=

{
1

0

}
if

{
x ∈ ∆

x /∈ (∆ ∪ Σ)

}
. (6.11)

The unit vector m normal to the surface Σ that encloses the region ∆ points
outside ∆ in (6.11). The identities (6.11) show that the integral over the
surface Σ of the normal flux m ·∇ξG is equal to 1 for every point x inside

the closed surface Σ , but is nil if x is outside Σ .

In particular, the arbitrary surface Σ can be taken as a sphere centered
at x . If r is the radius of the sphere, its surface area is 4πr2. The identity
that involves the integral over the surface Σ in (6.11) then shows that the
flux of m ·∇ξG ≡ dG/dr through the surface Σ of the sphere is given by

dG/dr = 1/(4πr2) if G only depends on r . This relation yields

4πG(ξ,x) = −1/r where (6.12)

r ≡
√

(ξ − x)2 + (η − y)2 + (ζ− z)2 (6.13)

is the distance between the points ξ≡ (ξ, η, ζ) and x ≡ (x, y, z) .

The gradient of (6.12) is

4π∇ξG = (ξ − x, η − y, ζ− z)/r3 = (ξ − x)/r3 . (6.14)

It follows that 4π∂2G/∂ξ2 = 1/r3− 3(ξ − x)2/r5. Analogous expressions
for the derivatives ∂2G/∂η2 and ∂2G/∂ζ2 show that G satisfies the Laplace
equation

∇2
ξ G = 0 if 0 < r (6.15)

in agreement with (6.9).

Thus, the function (6.12) satisfies the 3D Poisson equation (6.9), i.e.

∇2
ξ

(−1/r

4π

)
= δ(ξ − x) δ(η − y) δ(ζ − z) . (6.16)

The Green function (6.12) is known by several names, including the free-
space or unbounded-space Green function, the fundamental singularity, and
the Rankine source potential.
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Physical interpretation

The function G ≡ G(ξ,x) and its gradient ∇ξG can be associated with a

flow potential and the corresponding flow velocity in an unbounded fluid.
Specifically, the Green function (6.12) represents the velocity potential of
the flow created at a point ξ by a unit source located at a point x or,
alternatively, as the flow created at a point x by a unit source located at a
point ξ . Indeed, the fundamental Green function (6.12) satisfies the Poisson
equation (6.9) as well as the Poisson equation

∇2
xG ≡ (∂ 2

x + ∂2
y + ∂2

z )G = δ(x− ξ) δ(y − η) δ(z − ζ) . (6.17)

It is shown further on that this symmetry between the points x and ξ and
the related definition of a flow-field point and a source point in G(ξ,x)
are not as obvious for more general Green functions, notably the Green
functions associated with the flow around a ship that steadily advances in
calm water or through regular waves of primary interest in the book.

The boundary-integral representations (6.10a-b) determine a harmonic
function φ ≡ ϕ(x) at a point x located inside a region D or at its boundary
surface Σ in terms of a distribution of sources and dipoles, with densities
equal to the normal flux m·∇ξϕ or the function ϕ, associated with a Green

function G and its normal derivative m ·∇ξG, respectively. Moreover, a

harmonic function φ ≡ ϕ(x) is fully determined at every point x of the
finite region inside a closed boundary surface Σ by means of the boundary-
integral representation (6.10a) if ϕ and its normal derivative m ·∇ξϕ are

known at Σ .

General Green function

Expression (6.16) shows that the general solution of (6.9) is given by

4πG = −1/r +H where ∇2
ξH = 0 for ξ∈D . (6.18)

Thus, Green functions G(ξ,x) associated with the Laplace equation in the
three-dimensional space satisfy the Poisson equation (6.9) and are given
by the sum of the fundamental singularity (6.12) and a function H that is
harmonic (satisfies the Laplace equation) in D, or more generally in a larger
region that contains D.

Green functions are not unique because the harmonic function H in the
general solution (6.18) can be chosen in alternative ways, as is illustrated
in the next section. However, every Green function associated with the
three-dimensional Laplace equation is of the form (6.18).

The basic boundary-integral representation (6.10a) and the relations
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(6.10b) and (6.10c) have been applied, with the general Green function
(6.18), to numerous boundary-value problems in engineering and physics.

6.5 Alternative Green functions

Green’s fundamental relations (6.10) are now considered for the boundary-
value problem that determines the velocity potential

ϕ̂(ξ, t) = Re ϕ(ξ) e (ε− if ) t (6.19)

associated with the flow around a ship that advances at a constant speed
along a straight path through regular waves in water of finite uniform depth.
This boundary-value problem is stated by (1.34) and (1.35) where φ(x) is
now replaced by ϕ(ξ) .

Boundary-value problem

Specifically, the spatial component ϕ(ξ) of the flow potential ϕ̂(ξ, t) satisfies
the Laplace equation

∇2
ξ ϕ ≡ (∂2

ξ + ∂2
η + ∂2

ζ )ϕ = 0 in D (6.20a)

and the boundary conditions

ϕ ≈ 0 at Σ∞ , (6.20b)

∂ζ ϕ = 0 at ΣB , (6.20c)

[ ∂ζ + (F ∂ξ + if− ε)2 ]ϕ = F pFξ + if pF− qF at ΣF , (6.20d)

n ·∇ξ ϕ = qH at ΣH . (6.20e)

One has ε = +0 in the free-surface boundary condition (6.20d) where the
Froude number F and the non-dimensional (encounter) frequency f are
defined by (1.32). Moreover, every flow variable is non-dimensional as in
(1.30a-b). The unit vector n normal to the hull surface ΣH points outside
the ship (into the water). The hull flux qH in the boundary condition
(6.20e) at the ship-hull surface ΣH and the pressure pF and the flux qF in
the boundary condition (6.20d) at the free surface ΣF are presumed known
in the general boundary-value problem (6.20).

The boundary surface Σ in (6.10) is given by

Σ ≡ Σ∞∪ ΣB ∪ ΣF ∪ ΣH (6.21)

where Σ∞ is an infinitely large surface that encloses the flow region D, ΣB

is the part of the sea-bottom plane ζ = −d that is inside Σ∞, and ΣF is
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Figure 6.1: Closed boundary surface Σ ≡ Σ∞ ∪ ΣB ∪ ΣF ∪ ΣH associated
with the boundary-value problem that corresponds to the flow around a
ship that steadily advances through regular waves in water of uniform finite
depth. The unit vector m normal to the boundary surface Σ points outside
the flow region enclosed by Σ . The unit vector n = −m normal to the hull
surface ΣH points outside the ship (into the water).

the part of the undisturbed free-surface plane ζ = 0 that is inside Σ∞ and
outside the mean wetted ship-hull surface ΣH , as is shown in Fig.6.1.

Green functions G(ξ,x) associated with the Laplace equation in a three-
dimensional region D satisfy the Poisson equation (6.9), and are expressed
in (6.18) as the sum of the fundamental free-space singularity (6.12) and
a function H that satisfies the Laplace equation, i.e. is harmonic, in D.
As was already noted, the harmonic function H in the general expression
(6.18) for the Green function G associated with the 3D Laplace equation is
not uniquely defined and indeed can largely be chosen at will. Thus, Green
functions are not uniquely defined and alternative Green functions can be
used, as is illustrated in the remainder of this section.

In particular, Green functions can be—and usually are—defined in a
region DG that is larger than the flow region D and contains D. Specifically,
the flow region D for the boundary-value problem (6.20) is bounded by the
surface Σ defined by (6.21), whereas the Green function G is usually defined
within the entire lower half space ζ ≤ 0 (in deep water), which includes the
flow region D as well as the region Di inside the ship-hull surface ΣH .
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Far-field contribution

A particularly simple choice of the general harmonic function H in (6.18) is
H = 0 . The Green function that corresponds to this simplest choice is the
free-space Green function (6.12). The Rankine source potential (6.12) van-
ishes as r →∞ . This property and the far-field boundary condition (6.20b)
ensure that the contribution of the far-field surface Σ∞ in the boundary-
integral relations (6.10) is negligible if Σ∞ is sufficiently large. This result
holds for more general Green functions G, notably all the Green functions
considered in the book, as can be shown via an analysis of the behaviors of
G and the flow potential ϕ in the far-field limit r →∞ .

Contribution of the sea bottom

The contribution of the sea-bottom surface ΣB , where m ≡ (0, 0,−1) and
the boundary condition (6.20c) holds, in (6.10) is given by

−
∫

ΣB
dξ dη ϕ ∂ζG where ζ = −d .

This contribution is nil if the harmonic function H is chosen so that the
Green function G satisfies the boundary condition

∂ζG = 0 at ζ = −d . (6.22)

The boundary condition (6.22) applied to the Green function G is identical
to the boundary condition (6.20c) satisfied by ϕ.

The boundary condition (6.22) is satisfied if H is chosen as

H = −1/rd where (6.23a)

rd ≡
√

(ξ − x)2 + (η − y)2 + (ζ+ z + 2d)2 (6.23b)

denotes the distance between the point ξ ≡ (ξ, η, ζ) and the mirror image
xd ≡ (x, y,−z−2d) of the point x ≡ (x, y, z) with respect to the sea-bottom
plane ζ= −d. Expressions (6.18) and (6.23a) yield

4πG = −1/r −1/rd . (6.23c)

Thus, the contribution of the sea bottom ΣB in (6.10) is eliminated via the
simple choice of Green function given by (6.23c).

Contribution of the free surface in the special case F = 0

The contribution of the free surface ΣF , where m ≡ (0, 0, 1), in (6.10) is
given by ∫

ΣF
dξ dη (ϕ ∂ζG−G ∂ζϕ) . (6.24a)
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The free-surface boundary condition (6.20d) is now considered in the special
case F = 0 associated with diffraction-radiation of regular waves by an
offshore structure, and for the common case pF = 0 and qF = 0 . In this
particular case, the free-surface condition (6.20d) becomes

[ ∂ζ − (f + i ε)2 ]ϕ = 0 at ΣF . (6.24b)

The integrand of (6.24a) is nil, and the contribution of the free surface ΣF

in (6.10) is eliminated, if one chooses a Green function G that satisfies the
free-surface boundary condition

[ ∂ζ − (f + i ε)2 ]G = 0 at ζ = 0 . (6.24c)

This boundary condition is identical to the free-surface condition (6.24b)
satisfied by the flow potential ϕ .

Contribution of the free surface in the general case Ff 6= 0

The general case Ff 6= 0 associated with the free-surface boundary condition
(6.20d) is now considered in the common case pF = 0 and qF = 0 . Thus,
the potential ϕ satisfies the condition

[ ∂ζ + (if− ε+ F ∂ξ)
2 ] ϕ = 0 at ΣF . (6.25a)

If one chooses a Green function G that satisfies the free-surface boundary
condition

[ ∂ζ + (if− ε−F ∂ξ )2 ]G = 0 at ζ = 0 , (6.25b)

the contribution (6.24a) of the free surface ΣF in (6.10) is given by∫
ΣF
dξ dη (ϕ ∂ζG−G∂ζϕ)

=

∫
ΣF
dξ dη [ 2F (if− ε) ∂ξ (Gϕ) + F 2∂ξ (G∂ξϕ− ϕ ∂ξG)] . (6.26)

Stokes’ theorem∫
R
dξdη (∂Q/∂ ξ− ∂P/∂ η) =

∫
C
(P dξ +Qdη) (6.27)

where P (ξ, η) and Q(ξ, η) are differentiable functions defined within a finite
region R inside a closed curve C in the two-dimensional space (ξ, η), is now
applied to the free-surface integral (6.26). Specifically, the curve C in (6.27)
is taken as the waterline Γ∞∪Γ, where Γ∞ and Γ are the intersection curves
between the free surface and the far-field surface Σ∞ or the ship-hull surface
ΣH , and the region R in (6.27) is the portion ΣF of the free surface inside
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Γ∞ and outside Γ. The waterlines Γ∞ and Γ are oriented as in Fig.6.1.
Stokes’ theorem then yields∫

ΣF
dξ dη [2F (if − ε) ∂ξ (Gϕ) + F 2∂ξ (G∂ξϕ− ϕ ∂ξG)]

=

∫
Γ

dη [2F (if − ε)Gϕ+F 2(G∂ξϕ− ϕ ∂ξG)] (6.28)

where the contribution of the waterline Γ∞, negligible for a sufficiently large
surface Σ∞, is ignored.

Expressions (6.26) and (6.28) then yield∫
ΣF
dξ dη (ϕ ∂ζG−G ∂ζϕ)

=

∫
Γ

dη [2F (if − ε)Gϕ+F 2(G ∂ξϕ− ϕ ∂ξG)] . (6.29)

The relation (6.29) shows that the contribution of the free surface ΣF is
not eliminated if F 6= 0 . However, the surface integral (6.24a) over the
unbounded free surface ΣF is reduced to a line integral around the ship
waterline Γ.

The sign difference between the term +F ∂ξ that appears in the free-
surface boundary condition (6.25a) satisfied by the potential ϕ(ξ) and the
term −F ∂ξ in the free-surface boundary condition (6.25b) satisfied by the
Green function G(ξ,x) is essential in the transformation (6.29). This sign
difference is considered in section 6.8.

Contribution of the ship-hull surface

The contribution ∫
ΣH
da (ϕ m ·∇ξG−G m ·∇ξϕ) (6.30a)

of the ship-hull surface ΣH in (6.10) is now considered. The hull boundary
condition (6.20e) specifies the flux n · ∇ξϕ at ΣH , where n = −m . The

contribution (6.30a) then becomes∫
ΣH
da G qH (6.30b)

if a Green function that satisfies the boundary condition

n ·∇ξG = 0 at ΣH (6.30c)

is chosen. This homogeneous boundary condition corresponds to the non-
homogeneous boundary condition (6.20e) satisfied by the potential ϕ. The
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contribution (6.30b) of the ship-hull surface ΣH is then determined in terms
of the hull flux qH , which is presumed to be known in the boundary-value
problem (6.20), and the Green function G that satisfies the ship-hull surface
boundary condition (6.30c).

A Green function that satisfies the boundary condition (6.22) at the sea
bottom ζ = −d and the boundary condition (6.25b) at the free surface ζ = 0
can be applied to a general ship-hull surface ΣH . However, a Green function
that satisfies the hull boundary condition (6.30c) is associated with a specific
ship-hull surface ΣH , and a different Green function is therefore required
for every ship. Furthermore, Green functions that satisfy the boundary
condition (6.30c) are complicated and difficult to determine, even for special
simple geometrical surfaces ΣH such as a sphere or an ellipsoid.

Green functions that satisfy the sea-bottom boundary condition (6.22),
the free-surface boundary condition (6.25b) and the hull-surface boundary
condition (6.30c) are therefore not commonly used, and Green functions
that satisfy the sea-bottom boundary condition (6.22) and the free-surface
boundary condition (6.25b) are mostly used in practice.

6.6 Rankine-Fourier decomposition

The harmonic function H in the general Green function (6.18) can easily
be chosen so that the sea-bottom boundary condition (6.22) is satisfied;
indeed, the harmonic function H is given by the simple image Rankine
source (6.23a). However, the function H in expression (6.18) for the Green
function G(ξ,x) that satisfies the free-surface boundary condition (6.25b)
associated with a ship that steadily advances through regular waves in finite
water-depth is considerably more complicated than expression (6.23a).

This Green function is now considered in the simpler special case of deep
water. The Green function G(ξ,x) satisfies the Poisson equation (6.9) in
the lower half space ζ < 0 and the far-field boundary condition G → 0 as
r →∞ , in accordance with the far-field condition (6.20b) and the boundary
condition (6.20c) in the deep-water limit d =∞ . Thus, the Green function
G(ξ,x) is the solution of the boundary-value problem defined by the Poisson
equation

∇2
ξ G = δ(ξ − x) δ(η − y) δ(ζ − z) in ζ < 0 , (6.31a)

the far-field condition
G→ 0 as r →∞ , (6.31b)

and the free-surface boundary condition

[ ∂ζ + (if − ε−F ∂ξ )2 ]G = 0 at ζ= 0 (6.31c)

in accordance with (6.25b).
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The general solution of the Poisson equation (6.31a) can be expressed as

4πG = −1/r + 1/r′ +HF/π where (6.32)

r′ ≡
√

(ξ − x)2 + (η − y)2 + (ζ + z)2 (6.33)

denotes the distance between the point ξ ≡ (ξ, η, ζ) and the mirror image
x′ ≡ (x, y,−z) of the point x ≡ (x, y, z) with respect to the free-surface
plane ζ = 0 . The Rankine potential 1/r′ in (6.32) satisfies the Laplace
equation (is harmonic) in the lower half space ζ < 0 , in accordance with
(6.15), (6.16) and (6.31a). The solution (6.32) corresponds to the general
solution (6.18) with the harmonic function H chosen as H = 1/r′ +HF/π .

The function HF in (6.32) satisfies the Laplace equation

∇2
ξH

F = 0 in ζ < 0 (6.34a)

and the boundary conditions

HF→ 0 as r →∞ , (6.34b)

[ ∂ζ + (if − ε−F ∂ξ )2 ]HF = −2π ∂ζ(1/r
′) at ζ= 0 . (6.34c)

The boundary condition (6.34c) follows from the boundary condition (6.31c)
and expressions (6.32), (6.13) and (6.33).

Expression (6.32) defines the Green function in terms of the basic free-
space singularity −1/r and two components that account for free-surface
effects. The component 1/r′ corresponds to the case when the boundary
condition at the free surface is simplified as G = 0 , which corresponds to
the free-surface boundary condition (6.31c) in the limits f→∞ or F→∞
and effectively negligible gravity. The component HF in (6.32) accounts for
free-surface effects and finite values of f and F in the boundary condition
(6.31c). The solution HF of the boundary-value problem (6.34) can be
obtained using a double Fourier transform with respect to the two horizontal
coordinates ξ and η , and can be expressed as a Fourier superposition of
elementary wave functions, as is shown further on.

6.7 Submerged source or free-surface flux

The Poisson equation (6.31a) and the free-surface boundary condition
(6.31c) are associated with the flow created by a unit source located at
a point x = (x, y, z < 0) below the free-surface plane ζ = 0. In the limit
z = 0 , the Green function G(ξ,x) corresponds to the flow created by a unit
flux

qF = δ(ξ − x) δ(η − y)
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through the free-surface plane z = 0 at the point x = (x, y, z = 0) , and the
Poisson (nonhomogeneous Laplace) equation (6.31a) and the (homogeneous)
free-surface condition (6.31c) are replaced by the Laplace equation

∇2
ξ G = 0 in ζ < 0 (6.35a)

and the nonhomogeneous free-surface boundary condition

[ ∂ζ + (if − ε−F ∂ξ )2 ]G = −δ(ξ − x) δ(η − y) at ζ= 0 . (6.35b)

Thus, the Green function G(ξ,x) represents the velocity potential of
the flow created by a unit source located at a point (x, y, z < 0) below the
free-surface plane z = 0 , or a unit flux through the free surface at a point
(x, y, z = 0) of the free surface.

In the limit z = 0 , expressions (6.13) and (6.33) yield r = r′ and (6.32)
becomes

4πG =HF/π . (6.36)

The Laplace equation (6.35a), the far-field condition (6.31b) and the free-
surface condition (6.35b) then yield

∇2
ξH

F = 0 in ζ < 0 , (6.37a)

HF→ 0 as r →∞ , (6.37b)

[ ∂ζ + (if − ε−F ∂ξ )2 ]HF = −4π2 δ(ξ − x) δ(η − y) at ζ= 0 . (6.37c)

The relations (6.37a-b) and (6.34a-b) are identical. The relations (6.37c)
and (6.34c) are also identical, as is now shown. Expression (6.33) yields

∂ζ (1/r′) = −z/(h2 + z2)3/2 at ζ = 0 where h ≡
√

(ξ− x)2 + (η− y)2 .

The function ∂ζ (1/r′) at ζ = 0 is nil at z = 0 except if h = 0 , i.e. at the
point (ξ, η) = (x, y) where ∂ζ (1/r′) is unbounded. Moreover, one has∫ ∞

−∞
dη

∫ ∞
−∞
dξ ∂ζ (1/r′) = −2πz

∫ ∞
0

dhh/(h2 + z2)3/2 = 2π , i.e.

1

2π

∫ ∞
−∞
dη

∫ ∞
−∞
dξ ∂ζ(1/r

′) = 1 =

∫ ∞
−∞
dη δ(η − y)

∫ ∞
−∞
dξ δ(ξ − x)

where the integral on the right side follows from Dirac’s relation (6.6) and
the integral on the left side represents the flux through the free-surface
plane ζ = 0 due to a unit sink located at (x, y, 0) . Thus, the function HF

determined by the boundary-value problem (6.34) if z < 0 or the boundary-
value problem (6.37) if z = 0, and the related Green function (6.32), are
consistent.
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6.8 Flow-field point and source point

The Laplace equation (6.37a), the far-field condition (6.37b) and the free-
surface boundary condition (6.37c) that determine the harmonic function
HF suggest that this function can be expressed as a Fourier superposition
of elementary wave functions

e k (ζ+z)+ i [α (ξ−x)+β (η−y) ] ,

as is verified further on. Thus, the harmonic function HF is a function of
the three coordinates ξ− x, η− y and ζ + z . It follows that the free-surface
boundary condition (6.31c) can be expressed in the form

[ ∂z + (if − ε+F ∂x)2 ]G = 0 at z = 0 . (6.38)

The sign difference between the terms +F ∂x in (6.38) and −F ∂ξ in (6.31c)
is evidently associated with differentiations with respect to the coordinates
of the flow-field point ξ in (6.31c) or the source point x in (6.38) .

The boundary condition (6.38) involves the term +F ∂x in accordance
with the term +F ∂ξ in the free-surface boundary condition (6.25a) satisfied
by the flow potential ϕ, instead of the term −F ∂ξ that appears in (6.31c).
Indeed, the Poisson equation (6.17) and the boundary conditions (1.35b)
and (1.35d) show that the velocity potential φ(x ; ξ) of the flow created at
a flow-field point x by a unit source located at a point ξ below the free
surface z = 0 is determined by the boundary-value problem

(∂ 2
x + ∂2

y + ∂2
z )φ = δ(x− ξ) δ(y − η) δ(z − ζ) in z < 0 , (6.39a)

φ→ 0 as r →∞ and (6.39b)

[ ∂z + (if − ε+F ∂x)2 ]φ = 0 at z = 0 . (6.39c)

Thus, the Poisson equation (6.39a) and the free-surface boundary condition
(6.39c) are associated with the velocity potential of the flow created at a
point x by a unit source located at a point ξ that steadily advances in the
direction of the positive x axis at a (nondimensional) speed F .

In the special case F = 0 , i.e. for diffraction-radiation of regular waves
by an offshore structure, the Green function G(ξ,x) represents the velocity
potential of the flow created at a point ξ by a unit source located at a point
x , as well as the velocity potential of the flow created at x by a unit source
located at ξ .

However, if F 6= 0 , the Green function G represents the velocity potential
of the flow created at a point x by a unit source located at a point ξ that
advances in the direction of the positive x axis, or the velocity potential
of the flow created at a point ξ by a unit source located at a point x that
advances in the direction of the negative x axis. These alternative physical
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interpretations are easily understood in the particular case of a ship that
steadily advances in calm water along the x axis. In that special case, a
source at a point ξ that advances in the direction of the positive x axis
creates waves behind the source, i.e. in the region x < ξ . Likewise, a source
at a point x that advances in the direction of the negative x axis creates
waves behind the source, i.e. in the region x < ξ .

The interpretation in which the Green function G(ξ,x) represents the
velocity potential of the flow created by a source at a point x ≡ (x, y, z < 0)
or by a flux through the free surface at a point x ≡ (x, y, z = 0) , and
the singularity point x advances at a nondimensional speed −F along the x
axis, is the physical interpretation that is used in the definition of the Green
functions given in chapter 7 and in the formulation of boundary-integral
flow representations, based on Green’s basic identities (6.10), considered in
chapters 8 and 9. This interpretation is in accordance with the Poisson
equation (6.9) and the free-surface boundary condition (6.25b), which is
shown to be crucial in section 6.5.

6.9 Fourier transformation

Fourier transforms are now briefly defined because they are required in the
next chapter to determine the Green functions associated with the free-
surface boundary conditions relevant to the classes of flows considered in
the book. Fourier transforms also provide valuable basic insight into waves
created by a ship and their mathematical representation.

The Fourier transform f∗(α) of a function f(ξ) that vanishes as ξ → ±∞
is defined in this book as

f∗(α) =
1√
2π

∫ ∞
−∞
dξ e− iαξf(ξ) . (6.40a)

The inverse Fourier transform is given by

f(ξ) =
1√
2π

∫ ∞
−∞
dα e iαξf∗(α) . (6.40b)

The definition (6.40a) shows that the Fourier transform of the derivative
f ′(ξ) ≡ df(ξ)/dξ of the function f(ξ) is

f ′∗(α) =
1√
2π

∫ ∞
−∞
dξ e−iαξf ′(ξ) .

Integration by parts yields the classical simple rule

f ′∗(α) = iα f∗(α) . (6.40c)
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Thus, the Fourier transform f ′∗(α) of the derivative f ′(ξ) of a function
f(ξ) that vanishes as ξ → ±∞ is immediately obtained by multiplying
the Fourier transform f∗(α) of the function f(ξ) by iα.

Fourier transformation can be defined in more than one dimension. In
particular, a double Fourier transformation with respect to two horizontal
coordinates −∞ < ξ <∞ and −∞ < η <∞ is used further on. The double
Fourier transform f∗(α, β) of a function f(ξ, η) is defined as

f∗(α, β) =
1

2π

∫ ∞
−∞
dη

∫ ∞
−∞
dξ e− i (αξ+β η) f(ξ, η) . (6.41a)

The function f(ξ, η) is related to its Fourier transform f∗(α, β) by means
of the inverse transformation

f(ξ, η) =
1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα e i (αξ+β η) f∗(α, β) . (6.41b)

The definitions (6.40a) and (6.6) of the Fourier transform and the Dirac
delta function yield

δ∗(α;x) =
1√
2π

∫ ∞
−∞
dξ e− iαξ δ(ξ − x) =

1√
2π

e− iαx .

Thus, the functions

δ(ξ − x) and e− iαx/
√

2π

are Fourier transforms. Similarly, (6.41a) shows that the functions

δ(ξ − x) δ(η − y) and e− i (αx+β y)/(2π) (6.42)

are Fourier transforms. This important result provides basic insight into the
far-field waves created by a near-field singularity such as a Green function.

6.10 Two related fundamental solutions

Two fundamental elementary solutions of the Laplace equation have already
been encountered. These basic solutions are

1/r ≡ 1/
√

(ξ − x)2 + (η − y)2 + (ζ − z)2 with 0 < r (6.43a)

and e k ζ+ i (αξ+β η) where k =
√
α2 + β2 . (6.43b)

These two fundamental solutions, which correspond to the fundamental free-
space Green function (6.12) and an elementary wave function, are related
via the Fourier transformation defined in the previous section.
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The connection between the elementary solutions (6.43a) and (6.43b) can
be considered via the double Fourier transform of the fundamental Green
function (6.12). Moreover, this Fourier transform is used in chapter 7 to
determine the Green functions that satisfy the free-surface boundary con-
ditions associated with the classes of flows considered in the book. The
Fourier transform (1/r)∗ can be determined by evaluating the integral(

1

r

)
∗

=
1

2π

∫ ∞
−∞
dη

∫ ∞
−∞
dξ

e− i (αξ+β η)

r

in accordance with (6.41a).

However, it is simpler to determine (1/r)∗ by starting from the Poisson
equation (6.16), i.e.

(∂2
ξ + ∂2

η + ∂2
ζ )(1/r) = − 4π δ(ξ − x) δ(η − y) δ(ζ− z) .

Expressions (6.41a), (6.40c) and (6.6) show that the double Fourier trans-
formation of this equation with respect to the two horizontal coordinates ξ
and η yields

d2(1/r)∗/dζ
2− k2 (1/r)∗ = −2 e− i (αx+β y) δ(ζ−z) (6.44)

where k2≡ α2+ β2. One then has

d2(1/r)∗/dζ
2− k2(1/r)∗ = 0 for ζ < z and z < ζ .

The general solution of this differential equation is

(1/r)∗ = A+ e k ζ +A− e−k ζ

where A+ and A− are unspecified. This general solution can be restricted
because the function 1/r and (consequently) its Fourier transform (1/r)∗
are even function of ζ− z that vanish as ζ− z → ±∞ . The function (1/r)∗
is then given by

(1/r)∗ = A e−k |ζ−z | (6.45)

where A is unspecified.

The function (1/r)∗ defined by (6.45) is continuous, equal to A, for ζ= z .
However, its derivative is discontinuous at ζ= z . Specifically, the derivative
d(1/r)∗/dζ is given by

kA ek (ζ−z) for ζ < z or − k A e−k (ζ−z) for z < ζ .

It follows that one has

d(1/r)∗/dζ =

{−kA for ζ= z + 0

kA for ζ= z − 0

}
. (6.46)
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Integration of the differential equation (6.44) with respect to ζ within the
range [ z − 0 , z + 0 ] yields

[ d (1/r)∗/dζ ] ζ= z+ 0
ζ= z− 0 − k2

∫ z+ 0

z− 0

dζ (1/r)∗ = −2 e− i (αx+β y) .

This relation and expressions (6.46) yield −2 kA = −2 e− i (αx+β y). The
unspecified factor A in (6.45) is then given by

A = e− i (αx+β y)/k .

This expression and expression (6.45) finally yield

(1/r)∗ = e−k |z−ζ | − i (αx+β y)/k . (6.47a)

Expressions (6.41b) and (6.47a) then yield the integral representation

1

r
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e−k |ζ−z |+ i [α (ξ−x)+β (η−y) ] (6.47b)

of the free-space Green function 1/r . The changes of variables α→ −α and
β → −β in (6.47b) yield the equivalent expression

1

r
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e−k |z−ζ |+ i [α (x−ξ)+β (y−η) ] . (6.47c)

The integral representation (6.47b) relates the two fundamental solutions

1/r and e−
√
α2+β2 |z−ζ |+ i [α (x−ξ)+β (y−η) ] (6.47d)

of the Laplace equation.

The solution 1/r associated with the fundamental Green function (6.12)
is well suited for representing near-field local flows. The other solution
corresponds to an elementary plane wave, and is well suited to represent
far-field waves. Expressions (6.47) show that the two complementary near-
field and far-field solutions (6.47d) are related via Fourier transformation.
This property is analogous to the property (6.42).

The notation
h ≡

√
(x− ξ)2 + (y − η)2 (6.48)

is used hereafter.

The relations (6.47a) and (6.47c) can be generalized as

(1/
√
h2 + c2 )∗ = e−k |c | − i (αx+β y)/k and (6.49a)

1√
h2 + c2

=
1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e−k |c |+ i [α (x−ξ)+β (y−η) ] (6.49b)

=
1

2π

∫ ∞
0

dk

∫ π

−π
dγ e−k |c |+ i k [ (x−ξ) cosγ+(y−η) sinγ ] (6.49c)
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where c is real.

The particular choice c = z + ζ yields

(1/r′)∗ = e k (z+ζ )− i (αx+β y)/k and (6.50a)

1

r′
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e k (z+ζ ) + i [α (x−ξ)+β (y−η) ] (6.50b)

where r′ is defined by (6.33) as r′ ≡
√
h2 + (z + ζ )2 with h given by (6.48),

and one has z ≤ 0 and ζ ≤ 0 .

The choice c = z + ζ + 2 d in (6.49) yields

(1/rd)∗ = e−k (z+ζ+2 d)−i (αx+β y)/k and (6.51a)

1

rd
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e−k (z+ζ+2 d )+ i [α (x−ξ)+β (y−η) ] (6.51b)

where rd is defined by (6.23b) as rd ≡
√
h2 + (z + ζ+ 2d)2 with h given by

(6.48), and one has −d ≤ z ≤ 0 and −d ≤ ζ ≤ 0. Expressions (6.47)-(6.51)
are used in chapter 7.

6.11 Image singularities

The mirror image of the fundamental Rankine source −1/r in (6.12)-(6.13)
with respect to the mean free-surface plane ζ= 0 is used in expression (6.32)
for the Green function that satisfies the free-surface boundary condition
(6.31c). The distance r′ between the point ξ ≡ (ξ, η, ζ) and the mirror
image x′ ≡ (x, y,−z) of the point x ≡ (x, y, z) with respect to the plane
z = 0 is given by (6.33).

An illustrative application of expressions (6.47b) and (6.51b) is now
given. For ζ < z , expression (6.47b) yields

1

r
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e k (ζ−z)+ i [α (x−ξ)+β (y−η) ] . (6.52)

Expression (6.51b) and (6.52) then yield

∂ζ

(
1

r
+

1

rd

)
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα Ad e i [α (x−ξ)+β (y−η) ] where

Ad ≡ e k (ζ−z) − e−k (ζ+z+2d ) = e−k (z+d )
(
ek (ζ+d ) − e−k (ζ+d )

)
= 2 sinh[k (ζ + d)] e−k (z+d ) .

This expression is nil for ζ= −d. The sea-bottom boundary condition

∂ζ (1/r+1/rd ) = 0 at ζ = −d (6.53)

is then satisfied, in agreement with (6.23c) and (6.22).
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Chapter 7

Green functions associated
with flows due to ships or
offshore structures

This chapter considers the Green functions that satisfy the free-surface
boundary conditions associated with a ship that advances, in deep water,
at a constant speed through regular waves or in calm water. The Green
function that is appropriate for diffraction and radiation of regular waves
by an offshore structure or a moored ship (or other stationary bodies) is
also considered for deep water and in water of uniform finite depth.

7.1 Ship steadily advancing
through regular waves

The Green function G(ξ,x) that satisfies the free-surface condition (6.31c)
associated with a ship that steadily advances through regular waves is now
considered for deep water. This Green function is given by (6.32) where
the harmonic function HF is defined by the boundary-value problem (6.34).
Thus, the function HF satisfies the Laplace equation

(∂2
ξ + ∂2

η + ∂2
ζ )HF = 0 in ζ < 0 (7.1a)

and the boundary conditions

HF→ 0 as r →∞ and (7.1b)

[ ∂ζ + ( if− ε−F ∂ξ )2 ]HF = −2π ∂ζ (1/r′) at ζ= 0 . (7.1c)
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This boundary-value problem is solved via double Fourier transformation
with respect to the two horizontal coordinates ξ and η . Specifically, the
Fourier transform HF

∗ (α, β, ζ ; x) of the function HF(ξ, η, ζ ; x) is

HF
∗ (α, β, ζ ; x) =

1

2π

∫ ∞
−∞
dη

∫ ∞
−∞
dξ e− i (αξ+β η) HF(ξ, η, ζ ; x) (7.2a)

and the function HF is related to its Fourier transform HF
∗ via the inverse

Fourier transform

HF(ξ, η, ζ ; x) =
1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα e i (αξ+β η) HF

∗ (α, β, ζ ; x) (7.2b)

in accordance with (6.41).

Expression (6.40c), the identity k2≡ α2+ β2, and the Fourier transform
(6.50a) of 1/r′ show that Fourier transformation of the Laplace equation
(7.1a) and the boundary conditions (7.1b) and (7.1c) yields

d2HF
∗/dζ

2− k2HF
∗ = 0 in −∞ < ζ< 0 , (7.3a)

HF
∗ → 0 as ζ→ −∞ and (7.3b)

dHF
∗/dζ− [(f−Fα)2 + 2 i ε (f−Fα)− ε2 ]HF

∗

= −2π e k z− i (αx+β y) at ζ= 0 . (7.3c)

The general solution of the differential equation (7.3a) is

HF
∗ = A+ e k ζ +A− e−k ζ

where A+ and A− are unspecified. The boundary condition (7.3b) implies
A−= 0 .

The boundary condition (7.3c) then yields the solution

HF
∗ = 2π e k (ζ+z)− i (αx+β y)/(∆ + i ε∆f − ε2) (7.4a)

where the functions ∆ and ∆f are defined as

∆ ≡ (f−Fα)2− k and ∆f ≡ 2 (f−Fα) with k ≡
√
α2 + β2 . (7.4b)

The inverse Fourier transform (7.2b) of the function (7.4a) is given by

HF =

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k (ζ+z)+ i [α (ξ−x)+β (η−y) ]

∆ + i ε∆f − ε2
. (7.4c)

The changes of variables α → −α and β → −β in the double Fourier
integral (7.4c) yield the equivalent expression

HF =

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

∆ + i ε∆f − ε2
(7.5a)
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where the dispersion functions ∆ and ∆f are now defined as

∆ ≡ (f+Fα)2− k and ∆f ≡ 2 (f+Fα) with k ≡
√
α2 + β2 . (7.5b)

These dispersion functions agree with the dispersion function ∆ associated
with the analysis, considered in chapters 2 and 5, of free waves created by
a ship that advances through regular waves in deep water.

Expressions (7.5), where ε2 in the denominator of the double Fourier
integral (7.5a) is inconsequential and can be ignored, and expression (6.32)
show that the Green function G(ξ,x) associated with a ship that steadily
advances through regular waves in deep water can finally be expressed as

4πG = GR+GF where GR = −1/r +1/r′ i.e. (7.6a)

GR = −1/
√
h2 + (z − ζ )2 + 1/

√
h2 + (z + ζ )2 and (7.6b)

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

(f+Fα)2/k −1+ 2 i ε (f+Fα)/k
(7.6c)

with (α, β) = k (cosγ, sinγ) . (7.6d)

Moreover, h in (7.6b) is given by (6.48). Expression (7.6c) shows that the
Fourier component GF in the basic Rankine-Fourier decomposition (7.6a)
of G is given by a Fourier superposition of elementary wave functions.

7.2 Nonuniqueness of decomposition into
Rankine and Fourier components

The Rankine-Fourier decomposition (7.6) is not unique. In particular, the
Fourier representations (6.47c) and (6.50b) of the Rankine components 1/r
and 1/r′ can be used to express GR as

GR =
−1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k

[
e−k |z−ζ |− e k (z+ζ )

]
e i [α (x−ξ)+β (y−η) ] .

This Fourier representation of the Rankine component GR can be combined
with expression (7.6c) for the Fourier component GF. Thus, the Green func-
tion G defined by (7.6) can be expressed as

4πG =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα AzAζ

e i [α (x−ξ)+β (y−η) ]

∆ + i ε∆f
where (7.7a)

AzAζ ≡ e k (z+ζ ) +
(f+Fα)2− k

2 k

[
e k (ζ+z ) − e−k |ζ−z |

]
i.e.

Az = e k z and Aζ = e k ζ +
∆

2k

[
e k ζ − e−k ζ

]
if z < ζ or (7.7b)

Az = e k z +
∆

2k

[
e k z − e−k z

]
and Aζ = e k ζ if ζ < z . (7.7c)
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The representation (7.7) of the Green function G does not involve Rankine
singularities and expresses G as a double Fourier integral. The different
expressions (7.7b) and (7.7c) for the functions Az and Aζ in (7.7a) are cum-
bersome, and the representation (7.7) is not useful for practical applications.

Inversely, the general expressions (6.49) associated with the Fourier
transform of a Rankine source can be applied to extract Rankine sources
from the Fourier integral representation of the component GF, notably for
the useful purpose of ensuring that the amplitude function AzAζ in the
Fourier integral (7.7a) vanishes rapidly in the limits k → 0 and k → ∞ .
Thus, the general relation (6.49) can be applied to define alternative and
optimal Rankine-Fourier decompositions of Green functions. [7,1]

7.3 Ship steadily advancing
in deep calm water

In the special case f = 0, i.e. for steady flow around a ship that advances
at a constant speed in calm deep water, expressions (7.6) yield

4πG =
−1

r
+

1

r′
+

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

F 2α2− k + 2 i εFα
. (7.8)

This representation of the Green function expresses G in terms of the free-
space Rankine sources 1/r and 1/r′ and a double Fourier superposition
of elementary wave functions. Alternative Rankine-Fourier decompositions
can be obtained via the Fourier representation (6.50b) that expresses the
Rankine source 1/r′ as a Fourier superposition of elementary wave functions,
in the manner now explained.

Alternative Rankine-Fourier decompositions

Thus, alternative forms of (7.8) are now considered. Expression (6.50b) can
be used to express (7.8) in the two alternative forms

4πG =
−1

r
+

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

F 2α2 + k

2k

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

F 2α2− k + 2 i εFα
(7.9a)

4πG =
−1

r
− 1

r′
+

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

F 2α2

k

e k (z+ζ )+ i [α (x−ξ)+β(y−η) ]

F 2α2− k + 2 i εFα
(7.9b)

where the inconsequential term 2 i εFα is ignored in the numerators of the
Fourier integrals.
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Limits k → 0 and k →∞

The integrands of the double Fourier integrals in the three alternative rep-
resentations (7.8) and (7.9) involve the functions

A+ ≡ 1 , A ≡ (F 2α2/k +1)/2 or A− ≡ F 2α2/k . (7.10a)

In the small-wavenumber limit k → 0 , these expressions yield

A+∼ 1 , A ∼ 1/2 , A−∼ 0 . (7.10b)

The asymptotic approximations (7.10b) show that the double Fourier inte-
gral in the representation (7.9b) is preferable to the corresponding Fourier
integrals in the representations (7.8) and (7.9a) in the limit k → 0 . In the
large-wavenumber limit k →∞ , expressions (7.10a) yield

A+∼ 1

A ∼ F 2α2/(2k)

A−∼ F 2α2/k

 if 1� F 2α2

k
or


A+∼ 1

A ∼ 1/2

A−� 1

 if
F 2α2

k
� 1 . (7.10c)

The asymptotic approximations (7.10c) show that the functions A and A−

are O(k) as k → ∞ if α 6= 0 , and that the double Fourier integral in the
representation (7.8) is preferable to the corresponding Fourier integrals in
the representations (7.9) in the limit k → ∞ , except in the special case
F 2α2/k � 1 for which (7.9b) is best.

Thus, the representations (7.8) and (7.9b) are best suited in the limits
k → ∞ or k → 0, respectively. This conclusion, based on the behavior of
the double Fourier integrals in the alternative expressions (7.8) and (7.9) in
the limits k → ∞ or k → 0, can also be justified by considering the near-
field and far-field behaviors of the free-surface boundary condition (6.31c)
in the special case f = 0 now considered. This complementary ‘physical-
space’ analysis of the alternative representations (7.8) and (7.9b) is given
in section 7.7.

Optimal Rankine-Fourier decomposition

The foregoing analysis suggests the consideration of the representation

4πG = −1/r +1/r′ − 2/rF +H̃/π (7.11)

where rF ≡
√
h2 + (z + ζ−F 2)2 (7.12)

is the distance between the points ξ and xF ≡ (x, y,−z +F 2) . Expressions
(7.12) and (6.33) yield

−1

r
+

1

r′
− 2

rF
∼ −1

r
+

1

r′
as

r′

F 2
→ 0 , (7.13a)

−1

r
+

1

r′
− 2

rF
∼ −1

r
− 1

r′
as

r′

F 2
→∞ . (7.13b)
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Expression (6.49b) with c = z + ζ−F 2 yields

2

rF
=

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e k (z+ζ−F 2 )+ i [α (x−ξ)+β (y−η) ] . (7.14)

This relation and expression (7.8) show that the representation (7.11) is
given by

4πG = −1/r +1/r′− 2/rF

+
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα aF

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

F 2α2− k + 2 i εFα
(7.15a)

where aF ≡ 1+ (F 2α2/k −1) e−F
2k . (7.15b)

One has aF = 1 at the dispersion curves, defined by the equivalent relations
F 2α2 = k or F 2k = 1/cos2γ , and

aF ∼F 2k (1+ cos2γ) as k → 0 and aF ∼ 1 as k →∞ . (7.15c)

These asymptotic approximations show that the Fourier integral in (7.15)
is similar to the Fourier integrals in (7.9b) or (7.8) in the limits k → 0
or k →∞ , respectively, and the Rankine-Fourier decomposition associated
with expressions (7.15a-b) is then optimal in this respect.

The Green function that satisfies the free-surface boundary condition for
a ship that steadily advances in calm deep water is finally expressed as

4πG = GR+GF where GR = −1/r +1/r′− 2/rF i.e. (7.16a)

GR = −1/
√
h2 + (z − ζ)2 +1/

√
h2 + (z + ζ)2 − 2/

√
h2 + (z + ζ−F 2)2 ,

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk aF
e k (z+ζ ) + i [α (x−ξ)+β (y−η) ]

F 2α2/k −1+ 2 i εF α/k
(7.16b)

with aF = 1+ e−F
2k (F 2α2/k −1) . (7.16c)

Moreover, h in (7.16b) is given by (6.48).

7.4 Diffraction-radiation of regular waves
by offshore structures in deep water

In the special case of diffraction-radiation of time-harmonic waves by a
stationary body in deep water, expressions (7.6) with F = 0 yield

4πG =
−1

r
+

1

r′
+

1

π

∫ π

−π
dγ

∫ ∞
0

dk k
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

f2− k + 2 i εF
. (7.17)

The representation (6.50b) of the Rankine source 1/r′ as a Fourier superpo-
sition of elementary wave functions can again be used to obtain alternative
Rankine-Fourier decompositions and an optimal decomposition.
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Alternative Rankine-Fourier decompositions

Expression (6.50b) can be used to express (7.17) in the alternative forms

4πG =
−1

r
+

1

π

∫ π

−π
dγ

∫ ∞
0

dk
f2 + k

2

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

f2− k + 2 i εF
, (7.18a)

4πG =
−1

r
− 1

r′
+
f2

π

∫ π

−π
dγ

∫ ∞
0

dk
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

f2− k + 2 i εF
(7.18b)

where the inconsequential term 2 i εF is ignored in the numerators of the
integrands of the Fourier integrals.

Limits k →∞ and k → 0

The double Fourier integrals in the alternative representations (7.17) and
(7.18a-b) involve the functions

A+≡ k , A ≡ (f2 + k)/2 or A−≡ f2 .

These expressions yield
A+∼ k
A ∼ k/2
A−∼ f2

 as k →∞ and


A+→ 0

A→ f2/2

A−→ f2

 as k → 0 . (7.19)

The approximations (7.19) show that the double Fourier integrals in the
representations (7.18b) or (7.17) are preferable to the Fourier integrals in
the alternative representations in the limits k →∞ or k → 0, respectively.

This conclusion, based on the behavior of the double Fourier integrals in
the alternative expressions (7.17) and (7.18) in the limits k →∞ or k → 0,
can be further justified by considering the near-field and far-field behaviors
of the free-surface boundary condition (6.31c) in the special case F = 0 now
considered. This complementary ‘physical-space’ analysis of the alternative
representations (7.17) and (7.18b) is given in section 7.7.

Optimal Rankine-Fourier decomposition

The foregoing analysis suggests the consideration of the representation

4πG = −1/r −1/r′+ 2/rf +H̃/π (7.20)

where rf ≡
√
h2 + (z + ζ − 1/f2)2 (7.21)
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is the distance between the points ξ and xf ≡ (x, y,−z+1/f2) . Expressions
(7.21) and (6.33) yield

−1

r
− 1

r′
+

2

rf
∼ −1

r
− 1

r′
as f2r′→ 0 , (7.22a)

−1

r
− 1

r′
+

2

rf
∼ −1

r
+

1

r′
as f2r′→∞ . (7.22b)

Expression (6.49b) with c = z + ζ−1/f2 yields

2

rf
=

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k
e k (z+ζ−1/f2 )+ i [α (x−ξ)+β (y−η) ] . (7.23)

Expressions (7.20), (7.23) and (7.18b) yield

4πG = −1/r −1/r′+ 2/rf

+
f2

π

∫ π

−π
dγ

∫ ∞
0

dk aF
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

f2− k + 2 i εF
(7.24a)

where aF ≡ 1+ (k/f2−1) e−k/f
2

. (7.24b)

One has aF = 1 at the dispersion circle k/f2 = 1, and

aF ∼ 1 as k/f2→∞ and aF→ 0 as k/f2→ 0 . (7.24c)

These asymptotic approximations and the asymptotic approximations
(7.19) show that the double Fourier integral in the representation (7.24) is
similar to the corresponding Fourier integrals in the representations (7.18b)
or (7.17) in the limits k →∞ or k → 0, respectively. The Rankine-Fourier
decomposition (7.24) is in this respect optimal, and is used hereafter.

The Green function that satisfies the free-surface boundary condition
related to diffraction-radiation of regular waves by an offshore structure in
deep water is finally expressed as

4πG = GR+GF where GR = −1/r −1/r′+ 2/rf i.e. (7.25a)

GR = −1/
√
h2 + (z − ζ)2 −1/

√
h2 + (z + ζ)2 + 2/

√
h2 + (z + ζ−1/f2)2 ,

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk aF
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

1− k/f2 + 2 i ε/f
(7.25b)

with aF = 1+ e−k/f
2

(k/f2−1) . (7.25c)

The double integral Fourier representation (7.24) can be expressed as a
single Fourier integral via the relation

1

π

∫ π

−π
dγ e i [α (x−ξ)+β (y−η) ] = 2 J0(kh) (7.26)

where J0(·) denotes the Bessel function of the first kind. One then obtains
the alternative expression

4πG =
−1

r
− 1

r′
+

2

rf
+ 2

∫ ∞
0

dk
aF e k (z+ζ )J0(kh)

1− k/f2 + 2 i ε/f
. (7.27)
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7.5 Diffraction-radiation of regular waves by
offshore structures in finite water-depth

The Green function G(ξ,x) associated with diffraction-radiation of regular
waves by offshore structures in water of uniform depth d is now considered.
Equations (6.31) and (6.22) show that this Green function is the solution
of the boundary-value problem

∇2
ξ G = δ(ξ − x) δ(η − y) δ(ζ − z) in − d < ζ< 0 , (7.28a)

∂ζG = 0 at ζ = −d , (7.28b)

[ ∂ζ − (f + i ε)2 ]G = 0 at ζ= 0 , (7.28c)

G→ 0 as h ≡
√

(ξ − x)2 + (η − y)2 →∞ (7.28d)

with −d ≤ ζ ≤ 0 and −d < z < 0 .

Basic Rankine-Fourier decomposition

The general solution of the Poisson equation (7.28a) is now expressed as

4πG = GRb +GFb where GRb = −1/r − 1/rd with (7.29a)

r ≡
√
h2 + (z − ζ)2 and rd ≡

√
h2 + (z + ζ+ 2 d)2 . (7.29b)

In (7.29), rd denotes the distance between the point ξ≡ (ξ, η, ζ) and the
mirror image xd ≡ (x, y,−z− 2d) of the point x ≡ (x, y, z) with respect to
the sea-bottom plane z = −d as is shown in Fig.7.1. The function GFb (ξ,x)
in (7.29a) satisfies the equations

∇2
ξ G

F
b = 0 in − d < ζ< 0 , (7.30a)

∂ζG
F
b = 0 at ζ= −d , (7.30b)

[ ∂ζ − (f + i ε)2 ]GFb = (∂ζ −f2)(1/r +1/rd) at ζ= 0 . (7.30c)

Expressions (6.47b) and (6.51b) yield

1

r
+

1

rd
=

1

2π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1

k

[
ek (z−ζ ) + e−k (z+ζ+2d )

]
e i [α (x−ξ)+β (y−η) ]

if 0 < ζ− z . This expression and the identity

ek (z−ζ ) + e−k (z+ζ+2d ) =
[
ek (z+d ) + e−k (z+d )

]
e−k (ζ+d )

= 2 cosh[k (z + d)] e−k (ζ+d ) yield

π (∂ζ −f2)(1/r +1/rd) =

−
∫ ∞
−∞
dβ

∫ ∞
−∞
dα

(
f2

k
+ 1

)
cosh[k (z + d)] e−k (ζ+d ) e i [α (x−ξ)+β (y−η) ]
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if 0 < ζ− z .
The function

GFb =

∫ ∞
−∞
dβ

∫ ∞
−∞
dαA cosh[k (z + d)] cosh[k (ζ+ d)] e i [α (x−ξ)+β (y−η) ]

satisfies the Laplace equation (7.30a) and the boundary condition (7.30b)
at the sea bottom, and also satisfies the free-surface boundary condition
(7.30c) if

πA
[
f2− k tanh(kd) + 2 i εF

]
cosh(kd) = (f2/k)(1 +k/f2)/ek d .

One then has

GFb =
1

π

∫ π

−π
dγ

∫ ∞
0

dk aFb
cosh[k (z+ d)] cosh[k (ζ+ d)] e i [α (x−ξ)+β (y−η) ]

cosh(kd) ekd [1− (k/f2) tanh(kd) + 2 i ε/f ]

where aFb = 1+ k/f2 . (7.31)

Optimal Rankine-Fourier decomposition

The optimal deep-water Rankine-Fourier decomposition (7.25) is now ex-
tended to finite water-depth. Specifically, the Rankine-Fourier decomposi-
tion (7.29a) is modified as

4πG = GR+GF where (7.32a)

GR = −1/r −1/rd −1/r′−1/r′d + 2/rf+ 2/rfd with (7.32b)

r′ ≡
√
h2 + (z + ζ)2 , r′d ≡

√
h2 + (z − ζ− 2d)2 (7.32c)

rf ≡
√
h2 + (z + ζ−1/f2)2 , rfd ≡

√
h2 + (z − ζ−1/f2− 2d)2 (7.32d)

and r and rd are given by (7.29b). In (7.32c), r′ is the distance between the
point ξ and the mirror image x′ ≡ (x, y,−z) of the point x with respect to
the free-surface plane ζ = 0 , and r′d is the distance between the point ξ and
the mirror image x′d ≡ (x, y, z − 2d) of x′ with respect to the sea-bottom
plane ζ = −d. Similarly in (7.32d), rf is the distance between the points ξ

and xf ≡ (x, y,−z +1/f2) and rfd is the distance between the point ξ and

the mirror image xfd ≡ (x, y, z − 1/f2− 2d) of xf with respect to the sea
bottom z = −d. The flow-field point ξ, the source point x and the related
image points xd , x′, x′d , xf, xfd are shown in Fig.7.1.

Expressions (6.50b) and (7.23) and the general expression (6.49b) yield

1/r′+1/r′d − 2/rf− 2/rfd =

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1− 2 e−k/f
2

k

cosh[k (ζ + d)]

e k d
e k z+i [α (x−ξ)+β (y−η) ] .
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z = 0

free surface

z = −d

sea bottom

z = −2d

ξ ≡ (ξ, η, ζ)

x ≡ (x, y, z)

x′ ≡ (x, y,−z)

xf ≡ (x, y,−z + 1/f2)

xd ≡ (x, y,−z − 2d)

x′
d ≡ (x, y, z − 2d)

xf
d ≡ (x, y, z − 1/f2 − 2d)

Figure 7.1: Flow-field point ξ, source point x and image source points xd ,
x′, x′d , xf, xfd .

This expression and expressions (7.29a) and (7.31) show that the Green
function associated with diffraction-radiation of regular waves by an offshore
structure in water of uniform finite depth is given by (7.32a) where the
Rankine component GR is given by (7.32b-d) and (7.29b), and the Fourier
component GF can finally be expressed as

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
AzAζ e i [α (x−ξ)+β (y−η) ]

1− (k/f2) tanh(kd) + 2 i ε/f
where (7.33a)

Aζ ≡ 2 cosh[k(ζ + d)]/ekd and (7.33b)

Az ≡
[
1+

k

f2

]
cosh[k(z+ d)]

2 cosh(kd)
+

[
1

2
− e−k/f2

][
1− k

f2
tanh(kd)

]
ekz .

(7.33c)

In the deep-water limit d→∞ , expressions (7.33b) and (7.33c) yield

Aζ = e k ζ and Az = aF e k z (7.34)

where aF is defined by (7.25c). Expressions (7.32) and (7.33) for the Green
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function in finite water-depth d agree with the deep-water Green function
(7.25) in the limit d→∞ as expected.

Expressions (7.33b-c) for the amplitude function Az ζ ≡ AzAζ yield

Az ζ → 1 as k →∞ if z + ζ = 0 and Az ζ → 0 as k → 0 , (7.35)

whereas the amplitude function

Az ζb ≡
[
1+

k

f2

]
cosh[k (z+ d)] cosh[k (ζ+ d)]

cosh(kd) e k d

associated with the Fourier component GFb given by (7.31) is unbounded
as k → ∞ if z + ζ = 0 and is equal to 1 at k = 0 . The Rankine-Fourier
decomposition (7.32) and (7.33) is then preferable to the basic Rankine-
Fourier decomposition (7.29) and (7.31) and better suited to evaluate flows

due to distributions of singularities. Expressions (7.33b-c) yield Azζ = Azζb
at the dispersion curve defined by the dispersion relation ∆ = 0 where
∆ ≡ f2− k tanh(kd) .

Alternative representation of the Fourier component GF

The function Azζ = AzAζ given by (7.33b-c) can be expressed as

Azζ =

[
1+

k

f2

]
cosh[k (z+ ζ + 2d)] + cosh[k (z− ζ )]

2 e kd cosh(kd)

+
∆

f2

[
1

2
− e−k/f2

]
e k (z+ζ+2d ) + e k (z−ζ )

e 2kd

where ∆ = f2− k tanh(kd) . The Fourier component GF in the expression
for the Green function associated with diffraction-radiation of regular waves
by offshore structures in finite water depth can then be expressed as

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
(Az ζ+ +Az ζ− ) e i [α (x−ξ)+β (y−η) ]

1− (k/f2) tanh(kd) + 2 i ε/f
(7.36a)

= 2

∫ ∞
0

dk
(Az ζ+ +Az ζ− ) J0(kh)

1− (k/f2) tanh(kd) + 2 i ε/f
where (7.36b)

Az ζ± ≡
[
1+

k

f2

]
cosh(kz±)

2 ekd cosh(kd)
+

∆

f2

[
1

2
− e−k/f2

]
ekz

±

e2kd
(7.36c)

with z+ ≡ z + ζ + 2d and z− ≡ z − ζ . (7.36d)

The relation (7.26) was used in (7.36b). The functions Az ζ± defined by
(7.36c) are functions of k/f2, f2d and f2z± , and (7.36) expresses the Fourier
component GF as the sum of two components GF+ and GF− . The components
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GF± are functions of the nondimensional water depth f2d, the horizontal

distance f2h ≡ f2
√

(x− ξ)2 + (y − η)2 and the vertical distance f2z+ or
f2z−. Thus, GF is expressed as the sum of two components GF+ and GF−
that are functions of three variables, whereas the Fourier component GF

defined by (7.33) is a function of the four variables f2d, f2h, f2z and f2ζ .

7.6 Physical-space analysis

The alternative representations (7.16) and (7.25) of the deep-water Green
functions associated with the two particular cases f = 0 or F = 0 express G
as the sum of a Rankine component defined in terms of elementary Rankine
sources and a Fourier component given by a double Fourier integral. The
Rankine components in these alternative representations are asymptotically
equivalent to the Green functions G+ or G− defined as

4πG+≡ −1/r +1/r′ and 4πG−≡ −1/r −1/r′ (7.37)

in the near field r′→ 0 or the far field r′→ ∞, as is shown in (7.13) and
(7.22).

The Green functions G+ and G− satisfy the boundary conditions

G+ = 0 or ∂G−/∂ ζ = 0 at ζ = 0 (7.38)

that correspond to the free-surface boundary condition (6.31c) in the ‘zero-
gravity’ limit g = 0 , F = ∞ , f = ∞ or the ‘infinite-gravity’ limit g = ∞ ,
F = 0 , f = 0 .

The limits k →∞ or k → 0 in the ‘Fourier-space analysis’ considered in
the previous sections correspond to the near-field or far-field limits r′ → 0
or r′ → ∞ in a ‘physical-space analysis’ of the near-field and far-field ap-
proximations to the free-surface boundary condition. This complementary
physical-space analysis is now considered. [7,1]

Offshore structure in regular waves

In the case F = 0 , the free-surface boundary condition (6.31c) becomes

Gζ − (f+ i ε)2G = 0 at ζ = 0 (7.39a)

where ε can be taken as ε = 0 in this ‘physical-space’ analysis. The Green
function G that satisfies the free-surface boundary condition (7.39a) is a
function of the frequency-scaled variable xf ≡ f2x . The behaviors of the
Green function G in the near-field limit f2r′→ 0 and in the far-field limit
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f2r′→∞ are determined by the highest-order derivative Gζ or the lowest-
order derivative G in the free-surface condition (7.39a). This analysis and
the boundary conditions (7.38) then yield

G ∼ G− for f2r′� 1 and G ∼ G+ for 1� f2r′ . (7.39b)

The alternative representations (7.18b) and (7.17) are then best suited in
the near-field or far-field limits f2r′→ 0 or f2r′→∞ in the physical space,
and in the limits k → ∞ or k → 0 in the Fourier space, respectively. The
optimal representation (7.25) is equivalent to the representations (7.18b)
and (7.17) in these limits in the physical and Fourier spaces.

Ship steadily advancing in calm water

In the case f = 0 , the free-surface boundary condition (6.31c) becomes

Gζ +F 2Gξξ + 2 εF Gξ = 0 at ζ = 0 (7.40a)

where ε can again be taken as ε = 0 . The Green function that satisfies the
free-surface boundary condition (7.40a) is a function of the speed-scaled
variable xF ≡ x/F 2. The behaviors of the Green function G in the near-
field limit r′/F 2→ 0 and the far-field limit r′/F 2→∞ are determined by the
highest-order derivative Gξξ or the lowest-order derivative Gζ of G in the
free-surface condition (7.40a). This analysis and the boundary conditions
(7.38) then yield

G ∼ G+ for r′/F 2� 1 and G ∼ G− for 1� r′/F 2. (7.40b)

The alternative representations (7.8) and (7.9b) are then best suited in the
near-field or far-field limits r′/F 2→ 0 or r′/F 2→ ∞ in the physical space,
and in the limits k → ∞ or k → 0 in the Fourier space, respectively. The
optimal representation (7.15) is equivalent to the representations (7.8) and
(7.9b) in these limits in the physical and Fourier spaces.

Ship steadily advancing through regular waves

The free-surface boundary condition (6.31c) associated with the general
case Ff 6= 0 and a ship steadily advancing through regular waves is now
considered. The highest-order and lowest-order derivatives in (6.31c) are
Gξξ and G. This consideration and (7.38) then yield

G ∼ G+ as r′→ 0 and as r′→∞ . (7.41)

The representation (7.6) is then optimal in both the near-field and far-field
limits r′→ 0 and r′→ ∞ in the physical space, and the limits k → 0 and
k →∞ in the Fourier plane.
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7.7 Green functions for Ff 6= 0 and
the limits F = 0 or f = 0

The Rankine component

GR = −1/
√
h2 + (z − ζ )2 +1/

√
h2 + (z + ζ )2 (7.42a)

in expression (7.6b) associated with a ship that advances through regular
waves does not agree with the Rankine components

GR =
−1√

h2 + (z− ζ )2
+

1√
h2 + (z+ ζ )2

− 2√
h2 + (z+ ζ−F 2)2

, (7.42b)

GR =
−1√

h2 + (z− ζ )2
− 1√

h2 + (z+ ζ )2
+

2√
h2 + (z+ ζ−1/f2)2

(7.42c)

in expressions (7.16a) or (7.25a) associated with the particular cases f = 0
or F = 0 and a ship that steadily advances in calm water or an offshore
structure in regular waves.

Modified Rankine component GR

The Rankine component (7.42a) can be modified to be consistent with the
Rankine components (7.42b) and (7.42c) if f = 0 or F = 0 . In particular,
the expression

GR = −1/r +1/r′− 2/rF + 2/rFf where (7.43a)

r ≡
√
h2 + (z − ζ)2 , r′ ≡

√
h2 + (z + ζ)2 , (7.43b)

rF ≡
√
h2 + (z + ζ−F 2)2 , rFf ≡

√
h2 + (z + ζ−F 2−1/f2)2 (7.43c)

yields GR ∼ −1/r +1/r′− 2/rF as f→ 0 , (7.43d)

GR ∼ −1/r −1/r′+ 2/rf as F → 0 , (7.43e)

GR ∼ −1/r +1/r′ as f→∞ or F →∞ . (7.43f)

The approximations (7.43d) and (7.43e) are consistent with expressions
(7.42b) and (7.42c), and the approximation (7.43f) is consistent with the
limits f→∞ or F →∞ of the free-surface boundary conditions associated
with wave diffraction-radiation by offshore structures and flows around ships
steadily advancing in calm water or through regular waves.

Expressions (7.6) and (7.43a) then show that the Green function that
satisfies the free-surface boundary condition for a ship that steadily advances
through regular waves can be expressed as

4πG = GR+GF (7.44)
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where the Rankine component GR is given by (7.43a-c) and the free-surface
component GF is defined as

GF ≡ 2

rF
− 2

rFf
+

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

∆ + i ε∆f
. (7.45)

Expressions (6.49b) and (7.43c) yield

2

rF
− 2

rFf
=

1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1− e−k/f2

k
e−F

2k e k (z+ζ )+ i [α(x−ξ)+β(y−η) ] .

This expression and expressions (7.45) and (7.5b) yield

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
aF e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

(f+Fα)2/k −1+ 2 i ε(f+Fα)/k
(7.46a)

where aF ≡ 1+ e−F
2k (1− e−k/f2

)[(f+Fα)2/k −1] . (7.46b)

Expression (7.46b) yields aF = 1 at the dispersion curves defined by the
dispersion relation ∆ ≡ (f+Fα)2− k = 0 . Expression (7.46b) also yields

aF → 2 as k→ 0 and

aF → 1 as k →∞ if F 6= 0 or

aF ∼ f2/k as k →∞ if F = 0 .

The Rankine-Fourier representation (7.44), (7.43), (7.46) is consistent
with the Rankine-Fourier representations (7.16) and (7.25) in the special
cases f = 0 or F = 0 .

Decomposition of the Fourier component GF

The dispersion function ∆ defined by (7.5b) yields

∆ + i ε∆f − ε2 = (f+F k cosγ + i ε)2 −k
= F 2k2cos2γ − k [ 1− 2F (f + i ε) cosγ ] + (f+ i ε)2 . (7.47)

The classical representation of the quadratic function Ax2 −Bx+ C as

Ax2 −Bx + C = A (x− x+)(x− x−) where x± ≡ B ±
√
B2 − 4AC

2A

applied to (7.47) yields

∆ + i ε∆f − ε2 = (k − k+
ε )(k − k−ε )F 2cos2γ where (7.48)

k±ε ≡
[
1− 2 (f+ i ε)F cosγ ±

√
1− 4 (f+ i ε)F cosγ

]
/(2F 2cos2γ) .
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The relation (7.48) finally yields

∆ + i ε∆f − ε2 = (k − kiε )(k − koε )F 2cos2γ (7.49a)

where koε ≡ k+
ε and kiε ≡ k−ε are defined as

F 2koε ≡
[√

1/4− (f+ i ε)F cosγ +1/2
]2
/cos2γ and (7.49b)

kiε /f
2≡ (1+ i ε/f )2/

[√
1/4− (f+ iε)F cosγ +1/2

]2
. (7.49c)

In the limit ε = 0, the functions kiε(γ) and koε (γ) defined by (7.49b-c) become

ki/f2 = 1/(
√

1/4− τ cosγ +1/2)2 = 1/(δ +1/2)2 (7.50a)

F 2ko = (
√

1/4− τ cosγ + 1/2)2/cos2γ = (δ +1/2)2/ cos2γ (7.50b)

where δ ≡
√

1/4− τ cosγ and τ cosγ = (1/2 + δ)(1/2− δ) . (7.50c)

Expressions (7.50a-b) agree with expressions (5.6) for the dispersion curves
determined by the dispersion relation ∆ = 0 associated with a ship that
steadily advances through regular waves.

One has[√
1/4− (f+ i ε)F cosγ +1/2

]2
= (δ +1/2)2

[
1− i ε F cosγ

δ (δ +1/2)

]
+O(ε2) .

This approximation and expressions (7.49b-c) and (7.50) then yield

kiε = ki+ i ε δ if +O(ε2) and koε = ko− i ε δo/F +O(ε2) (7.51a)

where δ i ≡ 1/[ δ (δ +1/2)] and δo ≡ (δ +1/2)/(δ cosγ) . (7.51b)

Expressions (7.49a) and (7.51a) finally yield

1

∆ + i ε∆f
=

1

F 2 cos2γ

1

koε − kiε

(
1

k − koε
− 1

k − kiε

)
=

1

2 δ

(
1

k − ko + i ε δo/F
− 1

k − ki − i ε δ if

)
. (7.52)

where ki, ko, δ i, δo and δ are given by (7.50) and (7.51b).

Expressions (7.46a) and (7.52) yield the decomposition

GF = GFi +GFo where (7.53a)

GFi =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
aF k√

1− 4τ cosγ

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

ki− k + i ε δ if
(7.53b)

GFo =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
aF k√

1− 4τ cosγ

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

k − ko+ i ε δo/F
. (7.53c)
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The functions aF(k,γ), ki(γ) and ko(γ) in this decomposition are given by
(7.46b) and (7.50a-b). The relations (7.51b) show that one has

0 < δi and sign(δo) = sign(cosγ) . (7.53d)

Thus, the term δif may be taken as 1 in (7.53b), and δo/F can be taken as
sign(cosγ) in (7.53c). Expressions (7.53) provide a formal decomposition of
the function GF into two components GFi and GFo . [7,2]

The component GFi represents a flow that is scaled in terms of the length
g/ω2 and contains ring waves, associated with the dispersion curve I in the
inner region −k−i ≤ α ≤ k+

i in (5.11), and a related local flow. The flow
defined by the component GFo is scaled with respect to V 2

s /g and consists
of inner and outer V waves, associated with the two dispersion curves O−

and O+ in the outer regions −∞ < α ≤ −k−o and k+
o ≤ α <∞ in (5.11).

7.8 Alternative representations
of Green functions

The Rankine-Fourier representations (7.6) and (7.16) of the Green functions
associated with a ship that steadily advances through regular waves or in
calm water, and the representations (7.25) and (7.32-7.33) of the Green
functions for an offshore structure in deep water or in finite water-depth
express these Green functions in terms of Rankine components GR that
involve elementary Rankine sources and Fourier components GF given by
double Fourier integrals, which are singular at the dispersion curves ∆ = 0 .

The Green functions defined by (7.6), (7.16), (7.25) and (7.32), (7.33)
have been extensively considered. In particular, alternative representations
of these Green functions in terms of single integrals exist. Near-field and
far-field analytical approximations also exist for the simplest cases, notably
in deep water and for F = 0 or f = 0. Alternative methods for evaluating
the Green functions defined in this chapter, including analytical methods
based on complementary analytical approximations and numerical methods
based on table interpolation or polynomial approximations within contigu-
ous regions, have also been developed.

The numerous single-integral representations, analytical approximations,
and numerical approximations that have been obtained for the particular
Green functions considered in this chapter for a ship that steadily advances
through regular waves [7,3] or in calm water [7,4] and for offshore struc-
tures in deep water [7,5] or in finite water-depth [7,6] are reported in a
vast literature. These analytical relations and numerical methods, applica-
ble to specific classes of Green functions, are not considered in the book.
Instead, chapters 10-12 expound an alternative general approach—called

138



Fourier-Kochin method—in which the flow created by a general distribu-
tion of singularities, rather than a unit source, is directly evaluated. This
alternative method is applicable to a broad class of dispersive plane waves
associated with general dispersion functions ∆ and ∆1 .

7.9 Rankine component (GR)ζ

The alternative boundary-integral representations of potential flow around
a ship or an offshore structure (body) given in chapters 8 and 9 include flow
representations that involve a distribution over the mean wetted waterline
of the body, i.e. the intersection curve between the body and the free-surface
plane ζ = 0, of the functions

4π (∂ξ , ∂η )Gζ = (∂ξ , ∂η )(GR)ζ + (∂ξ , ∂η )(GF )ζ (7.54)

where GR and GF are the Rankine and Fourier components in the basic
Rankine-Fourier decomposition 4πG = GR + GF defined in this chapter
and ζ means integration with respect to ζ . The contribution of the Fourier
component (GF )ζ to the velocity potential of the flow around a body can
be evaluated via the Fourier-Kochin method expounded in chapters 10–12.
The Rankine component (GR)ζ in (7.54) is now considered.

Expressions (7.43b) and (6.48) yield

r ≡
√
h2 + (z − ζ )2 and r′ ≡

√
h2 + (z + ζ )2 (7.55a)

where h ≡
√

(x− ξ)2 + (y − η)2 . (7.55b)

At the free-surface plane ζ = 0 , one then has

(−1/r)ζ = (1/r′)ζ and (−1/r)ζ = (1/r′)ζ .

It follows that one has

(−1/r −1/r′)ζ = 0 and (−1/r +1/r′)ζ = (2/r′)ζ at ζ = 0 . (7.56a)

Moreover, one has{
∂ ζξ

∂ ζη

}
1

r′
=

1/r′

r′− (ζ + z)

{
x− ξ
y − η

}
. (7.56b)

More generally, one has{
∂ ζξ

∂ ζη

}
1

rc
=

1/rc
rc− (ζ + c)

{
x− ξ
y − η

}
where

rc ≡
√
h2 + (ζ + c)2 and ζ + c ≤ 0 . (7.56c)
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Expressions (7.56) can be used in the boundary-integral flow representa-
tions given in chapters 8 and 9 for wave diffraction-radiation by an offshore
structure in deep water or in finite water-depth and for a ship that steadily
advances in calm water or through waves.
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Chapter 8

Boundary-integral flow
relations for an offshore
structure in regular waves

The method of Green function and boundary-integral flow representation
introduced in chapter 6 is now applied to diffraction-radiation of regular
waves by a large stationary body (offshore structure, moored ship) in water
of uniform finite depth. The body can be fixed (for wave diffraction) or
it can undergo small-amplitude oscillatory motions about a mean position
(for wave radiation). In the latter case, the flow around the body in its
mean position is considered, in accordance with the classical analysis of
diffraction-radiation of regular waves by stationary floating bodies, and as
is briefly explained in chapter 1. [1,6]

Green’s fundamental boundary-integral relation (6.3) is applied to the
boundary-value problem and the Green function associated with the usual
linear flow model, called ‘free-waterplane flow model’ in this chapter, of wave
diffraction-radiation by a stationary body. Green’s identity is also applied
to an alternative linear flow model, called ‘rigid-waterplane flow model’.
Green’s basic identity (6.3) applied to the usual free-waterplane flow model
in sections 8.1–8.3, or to the alternative rigid-waterplane flow model in
sections 8.4 and 8.5, yield identical boundary-integral flow representations.
Specifically this flow representation is given by (8.36), which is the main
result of this chapter. [8,1]

The rigid-waterplane flow model provides a simple basis for preventing
spurious solutions for special wave frequencies, called irregular frequencies,
that are ultimately related to the fact that the Green function for diffraction-
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radiation of regular water waves is defined within the flow region outside
the body as well as inside the body, and thus contains waves that propagate
inside the body. [8,2]

8.1 General boundary-value problem and
basic free-waterplane linear flow model

The boundary-value problem associated with diffraction-radiation of regular
(time-harmonic) water waves of frequency ω by a stationary rigid body such
as an offshore structure or a moored ship is defined in chapters 1 and 6.
This boundary-value problem is now restated for ease of reference. The
flow around the body is observed from a Cartesian system of coordinates,
denoted as ξ ≡ (ξ, η, ζ) or x ≡ (x, y, z) . The coordinates ξ and x, the
corresponding flow potentials

ϕ ≡ ϕ(ξ) and φ ≡ ϕ(x)

and all other flow variables are nondimensional in terms of a reference length
Lr , commonly chosen as a characteristic dimension of the body, the accel-
eration of gravity g and (for the flow pressure) the water density ρw as in
section 1.5.

The flow potential associated with diffraction-radiation of regular waves,
with nondimensional frequency f defined by (1.32) as f ≡ ω

√
Lr/g , by a

stationary body is expressed as

ϕ̂(ξ, t) = Re ϕ(ξ) e (ε− i f ) t = Re ϕ(ξ) e− i fε t (8.1a)

where fε ≡ f+ i ε with ε = +0 (8.1b)

in accordance with (6.19). The corresponding (nondimensional) free-surface
elevation and dynamic flow pressure are given by (1.37) as

zF(ξ, η, t) = Re [ if ϕ(ξ, η, 0)− pF(ξ, η)] e− if t where ξ ∈ ΣF (8.2a)

and pd(ξ, t) = Re if ϕ(ξ) e− if t where ξ ∈ D . (8.2b)

The elevation of the free surface ΣF and the dynamic pressure in the flow
region D are then directly determined in terms of the flow potential ϕ.

The classical free-waterplane linear flow model and the related boundary-
integral flow relations are associated with the 3D region D inside the closed
boundary surface

Σ ≡ ΣB ∪ Σ∞∪ ΣF ∪ ΣH (8.3)

defined in Fig.8.1. Specifically, Σ∞ denotes an infinitely large surface, ΣB

is the portion of the horizontal sea-bottom plane ζ = −d that is inside Σ∞,
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Figure 8.1: Boundary surface Σ ≡ ΣB∪Σ∞∪ΣF∪ΣH related to the basic
free waterplane boundary-value problem (8.4) for diffraction-radiation of
regular waves by an offshore structure in water of uniform finite depth.

ΣH denotes the mean wetted body surface and ΣF is the portion of the
plane ζ = 0 of the undisturbed free surface that is inside Σ∞ and outside
ΣH. The portion of the plane ζ = 0 that is inside ΣH , called waterplane
hereafter, is denoted as ΣFi and the intersection curve between the body
surface ΣH and the plane ζ = 0 is denoted as Γ, as is shown in Fig.8.1.
The unit vector m normal to the closed boundary surface Σ points outside
Σ and the region D, as in Fig.8.1. The unit vector n = −m normal to the
body surface ΣH points outside the body.

As is stated in (1.34-1.35) and (6.20), the spacial component ϕ(ξ) of the
velocity potential (8.1a) satisfies the Laplace equation

∇2
ξ ϕ ≡ ∂

2
ξ ϕ+ ∂2

η ϕ+ ∂2
ζ ϕ = 0 in D , (8.4a)

the far-field condition

ϕ→ 0 as
√
ξ2 + η2 →∞ (8.4b)

applied at an infinitely large surface Σ∞, the sea-bottom boundary condition

ϕ
ζ

= 0 at ΣB , (8.4c)

the free-surface boundary condition

ϕ
ζ
− f2

ε ϕ = if pF− qF at ΣF (8.4d)
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and the body-surface boundary condition

n ·∇ξ ϕ = qH at ΣH . (8.4e)

The flux qH(ξ) in (8.4e) is presumed to be known at every point ξ of
the mean wetted body surface ΣH in this chapter. In particular, the body-
surface flux qH that corresponds to the diffraction problem and the six
radiation problems associated with a linear analysis of diffraction-radiation
of regular waves of small amplitude is given by classical expressions [1,6] .
The pressure pF(ξ, η) and the flux qF(ξ, η) in the free-surface boundary
condition (8.4d) likewise are presumed to be specified at every point (ξ, η, 0)
of the undisturbed free surface ΣF . A free-surface pressure pF(ξ, η) occurs
within a perturbation analysis of the influence of weak nonlinearities in
the free-surface boundary condition [1,3] . The free-surface flux qF, where
0 < qF means that water is injected through the free surface, is used in the
free-surface boundary condition (8.5d).

8.2 Green function for wave diffraction
and radiation by stationary bodies

In accordance with the method of Green function and boundary-integral
flow representation introduced in chapter 6, a Green function G(ξ,x) that
is associated with the boundary-value problem (8.4) is defined. Specifically,
this Green function satisfies the far-field condition

G→ 0 as h ≡
√

(ξ − x)2 + (η − y)2 →∞ , (8.5a)

the sea-bottom boundary condition

Gζ = 0 at ζ = −d (8.5b)

and the complementary equations{∇2
ξ G = δ(ξ − x) δ(η − y) δ(ζ − z) in ζ < 0

Gζ − f2
ε G = 0 at ζ = 0

}
if z < 0 (8.5c)

or

{∇2
ξ G = 0 in ζ < 0

Gζ − f2
ε G = − δ(ξ − x) δ(η − y) at ζ= 0

}
if z = 0 . (8.5d)

Equations (8.5c-d) show that the Green function G(ξ,x) represents the
velocity potential of the flow created by a (pulsating) source located at the
point (x, y,z < 0) or a flux across the free surface at the point (x, y,z = 0).
These equations correspond to equations (7.28), (6.31) and (6.35).
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8.3 Free-waterplane boundary-integral
flow relations

Green’s fundamental relation (6.3) is now applied, in the flow region
bounded by the surface Σ defined by (8.3) and Fig.8.1, to the boundary-
value problem (8.4) associated with the free-waterplane linear flow model
and the related Green function G(ξ,x) determined by (8.5).

Three complementary boundary-integral relations

Green’s identity (6.3) with ψ(ξ) = G(ξ,x), the Laplace equation (8.4a), the
far-field conditions (8.4b) and (8.5a), the sea-bottom conditions (8.4c) and
(8.5b), and the body-surface condition (8.4e) yield∫
D
dv ϕ∇2

ξG =

∫
ΣF
dξdη (ϕGζ −Gϕζ ) +

∫
ΣH
da (GqH− ϕ n ·∇ξG) (8.6)

where G ≡ G(ξ,x) and ϕ ≡ ϕ(ξ) . Furthermore, da ≡ da(ξ) and qH ≡ qH(ξ)
denote the differential element of area or the flux at a point ξ of the body
surface ΣH, and dv ≡ dv(ξ) is the differential element of volume at a point
ξ of the 3D flow region D. The unit vector n ≡ n(ξ) normal to ΣH points
into the water, as was already noted and is shown in Fig.8.1.

Use of the identity

ϕ Gζ−Gϕ
ζ

= ϕ (Gζ−f2
ε G)−G (ϕ

ζ
−f2

ε ϕ) (8.7)

and the free-surface boundary condition (8.4d) in the surface integral over
the undisturbed free surface ΣF in (8.6) yields∫

D
dv ϕ∇2

ξ G−
∫

ΣF
dξdη ϕ (Gζ−f2

ε G) =∫
ΣH
da (GqH− ϕ n ·∇ξG) +

∫
ΣF
dξdη G (qF− if pF ) (8.8)

where qH , pF and qF are presumed known as was already noted. The flow
potential ϕ ≡ ϕ(ξ) in the integrals over D and ΣF in (8.8) can be expressed
as ϕ = (ϕ− φ) + φ where

φ ≡ ϕ(x)

is the flow potential at the singularity-point (submerged source or free-
surface flux) x in the Green function G(ξ,x) . The relations∫

D
dv (ϕ− φ)∇2

ξ G = 0 and

∫
ΣF
dξdη (ϕ− φ)(Gζ−f2

ε G) = 0 , (8.9)
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which follow from the identity ϕ− φ = 0 if ξ = x and the relations (8.5c-d)
and (6.6), yield∫

D
dv ϕ∇2

ξ G−
∫

ΣF
dξdη ϕ (Gζ−f2

ε G) = φ C (x) (8.10a)

where C (x) ≡
∫
D
dv∇2

ξ G−
∫

ΣF
dξdη (Gζ−f2

ε G) . (8.10b)

Equations (8.5c-d) then yield

C (x) =


1

0

1/2

 if x ∈


D ∪ ΣF

Di ∪ ΣFi

ΣH ∪ Γ

 (8.11a)

where D ∪ ΣF and Di ∪ ΣFi denote the 3D regions that are strictly outside
or inside the body surface ΣH∪Γ. The relations (8.8) and (8.10a) yield the
basic boundary-integral relation

C (x) φ =

∫
ΣH
da (GqH− ϕ n ·∇ξG) + φΣF (8.11b)

where φΣF(x) ≡
∫

ΣF
dξdη G(qF− if pF ) . (8.12)

In the special case when no body surface ΣH exists, the relations (8.10b)
and (8.11a) yield C = 1 in the entire flow region z ≤ 0 , and the boundary-

integral relation (8.11b) with φΣF given by (8.12) explicitly determines the
velocity potential of the flow created by a prescribed distribution of pressure
pF(ξ, η) and/or flux qF(ξ, η) at the free surface ΣF as

φ =

∫
ΣF
dξdη G (qF− if pF ) = φΣF ,

in agreement with the expression that can be directly obtained via Fourier
transformation of the reduced boundary-value problem defined by (8.4a-d).

The relation (8.11b) with C (x) given by expressions (8.11a) yield the
three complementary boundary-integral relations

φ =

∫
ΣH
da (GqH− ϕ n ·∇ξG) + φΣF if x ∈ (D ∪ ΣF ) , (8.13a)

φ

2
=

∫
ΣH
da (GqH− ϕ n ·∇ξG) + φΣF if x ∈ (ΣH ∪ Γ) , (8.13b)

0 =

∫
ΣH
da (GqH− ϕ n ·∇ξG) + φΣF if x ∈ (Di ∪ ΣFi ) . (8.13c)

The pressure pF and the flux qF at the free surface ΣF in the potential φΣF

defined by (8.12) and the flux qH ≡ n ·∇ξϕ at the body surface ΣH are

presumed known in the boundary-integral relations (8.13), as in (8.4d-e).
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The relation (8.13b) only involves ϕ ≡ ϕ(ξ) and φ ≡ ϕ(x) at points ξ
and x of the body surface ΣH . Thus, (8.13b) yields an integral equation that
determines the unknown flow potential φ ≡ ϕ(x) at x ∈ ΣH . The relation
(8.13a) can be used subsequently to determine the flow potential ϕ(x) at
points x in the flow region D ∪ ΣF outside the body surface.

However, the relation (8.13c) does not determine φ inside the body.
Indeed, expressions (8.11a) yield C (x) = 0 at points x inside the body,
which means that φ ≡ ϕ(x) is undetermined at such points. This result is in
accordance with the fact that the relations (8.11) and (8.13), obtained from
Green’s fundamental relation (6.3) applied in the flow region D outside the
body, cannot determine the flow in the region Di inside the body. Thus, the
basic boundary-integral relations (8.13) associated with the free-waterplane
flow model do not preclude the occurrence of spurious solutions for special
(irregular) frequencies because the Green function G exists in the region Di
inside the body surface ΣH as well as in the flow region D.

The boundary-integral relations (8.13a-b) involve the Green function
G and its normal derivative n · ∇ξG. Specifically, the relations (8.13a-b)

involve the distributions of GqH and G(qF− if pF ) over ΣH or ΣF and the
distribution of dipoles ϕ n ·∇ξG over ΣH . The Green function G is O(1/r)

but the normal derivative n ·∇ξG is O(1/r2) as r → 0 . Thus, G is weakly

singular (and easily integrable) as r → 0 , but n · ∇ξG is more strongly

singular (although integrable).

Equivalent single weakly-singular boundary-integral relation

Both the term C (x) on the left side of (8.11b) and the potential

φδ(x) ≡
∫

ΣH
da ϕ n ·∇ξG (8.14)

on the right side of (8.11b) are discontinuous across the body surface ΣH .
However, these two discontinuities exactly cancel out, and the flow potential
φ ≡ ϕ(x) defined by the boundary-integral relation (8.11b) is continuous at
ΣH . A modified boundary-integral relation that avoids the discontinuities
in the values of C (x) and φδ (x) in (8.11b), and holds at the body surface
ΣH as well as inside and outside ΣH, i.e. everywhere in the lower half space
z ≤ 0 , is now obtained.

In accordance with expression (8.10b), the complementary function

Ci(x) ≡
∫
Di
dv ∇2

ξ G−
∫

ΣFi

dξdη (Gζ−f2
ε G) (8.15a)
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is defined. Equations (8.5c-d) yield

Ci(x) =


0

1

1/2

 if x ∈


D ∪ ΣF

Di ∪ ΣFi

ΣH ∪ Γ

 . (8.15b)

The relations (8.11a) and (8.15b) then show that one has

C (x) + Ci(x) = 1 (8.16)

at every point x in the lower half space z ≤ 0 . The divergence theorem
applied in expression (8.15a) yields the alternative expression

Ci(x) =

∫
ΣH
da n ·∇ξG+f2

ε

∫
ΣFi

dξdη G (8.17)

where fε can be replaced by f .

Addition of the term Ci φ on the left and right sides of (8.11b), with
expressions (8.16) or (8.17) used on the left or right sides, yields

(1− CΓ)φ =

∫
ΣH
da [GqH+ (φ− ϕ) n ·∇ξG ] + φΣF (8.18a)

where CΓ(x) ≡ f2

∫
ΣFi

dξdη G(ξ, η, 0,x) (8.18b)

and φΣF is given by (8.12). The boundary-integral flow relation (8.18a)
holds at every point (x, y, z ≤ 0) and is equivalent to the three comple-
mentary boundary-integral relations (8.13) for points x in the flow region
D∪ΣF, at the body surface ΣH∪Γ or in the region Di∪ΣFi inside the body.

The term φ−ϕ ≡ ϕ(x)−ϕ(ξ) in (8.18a) vanishes at points ξ = x in the
Green function G(ξ,x) . The singularity in the integrand of the integral

φδ∗(x) ≡
∫

ΣH
da (φ− ϕ) n ·∇ξG (8.19)

is then weaker than the singularity in the integrand of the integral (8.14).
Specifically, the Green function G and the dipole term (φ − ϕ) n ·∇ξG
in (8.18) both are O(1/r) as r → 0 and are then weakly singular. As a
result, the flow potential φδ∗ defined by the weak dipole distribution (8.19)
is continuous at the body surface ΣH , whereas the potential φδ defined by
(8.14) is not, and every component of the weakly singular boundary-integral
relation (8.18) is continuous at the body surface ΣH .

The weakly singular boundary-integral relation (8.18) applied at points
x ∈ ΣH only involves ϕ(ξ) at ξ ∈ ΣH and ϕ(x) at x ∈ ΣH . This boundary-
integral relation therefore yields an integral equation that determines the
flow potential ϕ(x) at points x of the body surface, like the boundary-
integral relation (8.13b).
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8.4 Rigid-waterplane flow model
and boundary-value problem

A complementary analysis of diffraction-radiation of regular waves by a
stationary body that pierces the free surface is now considered. This analysis
is based on an alternative linear flow model, called rigid-waterplane flow
model hereafter, to the basic free-waterplane flow model associated with
Fig.8.1 and considered in sections 8.1–8.3. In the rigid-waterplane flow
model, a body that pierces the free surface is treated as the limit of a body
that is closed via a rigid inner waterplane submerged at an infinitesimally
small depth, as is shown in Fig.8.2 and is now explained.

The main feature of this flow model is that a thin band −δ ≤ z ≤ 0 with
0 < δ � 1 is removed from the upper part of the body surface ΣH , which
is closed by a rigid horizontal lid denoted as ΣHi . The open body surface
ΣH in Fig.8.1 associated with the classical free-waterplane flow model then
becomes the extended closed body surface ΣH− ∪ΣHi , where ΣH− denotes the
body surface ΣH from which the thin band −δ ≤ z ≤ 0 has been removed.
The rigid lid ΣHi that closes the open body surface ΣH− is located in the
plane z = −δ , as is shown in Fig.8.2. The portion of the free-surface plane
z = 0 located inside the body surface ΣH (above the lid ΣHi ) is denoted as
ΣFi , and the free surface outside ΣH but inside Σ∞ is denoted as ΣF.

Thus, as is illustrated in Fig.8.2, the rigid-waterplane linear flow model
and the related boundary-value problem are associated with the flow region
D inside the closed boundary surface

Σ ≡ ΣB ∪ Σ∞∪ ΣF ∪ ΣFi ∪ ΣHi ∪ ΣH− (8.20)

where Σ∞ is an infinitely large surface, ΣB and ΣF ∪ΣFi denote the portions
of the sea bottom ζ = −d or the free surface ζ = 0 inside Σ∞, and ΣH− ∪ΣHi
is the extended body surface obtained by closing the truncated body surface
ΣH− with a rigid horizontal lid ΣHi as was already explained. The unit vector
m normal to the boundary surface Σ , notably at the rigid lid ΣHi and at
the waterplane ΣFi , points outside the flow region D, whereas the vector
n = −m normal to the body surface ΣH− points into the water.

In accordance with the boundary surface Σ associated with the rigid-
waterplane flow model, the free-surface boundary condition is applied at
the entire free-surface plane ΣF ∪ ΣFi and the body-surface condition is
applied at the extended body surface ΣH− ∪ ΣHi defined in Fig.8.2, rather
than at the intersecting surfaces ΣF or ΣH shown in Fig.8.1. The limit
δ → 0 is ultimately considered and compatibility between the free-surface
boundary condition at the waterplane ΣFi and the body-boundary condition
at the rigid lid ΣHi is imposed in that limit.

The horizontal lid ΣHi that closes the body surface ΣH− is a rigid surface,
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Figure 8.2: Boundary surface Σ ≡ ΣB∪Σ∞∪ΣF∪ΣFi ∪ΣHi ∪ΣH− associated
with the rigid waterplane boundary-value problem defined by (8.21) for
diffraction-radiation of regular waves by an offshore structure in water of
uniform finite depth. The unit vector m normal to the closed boundary
surface Σ points outside Σ and the flow region. The unit vector n = −m
normal to the body surface ΣH− points outside the body.

as was already noted. Section 2.6 shows that only very short time-harmonic
waves can exist in the shallow layer of water −δ < z < 0 between the lid
ΣHi and the free surface ΣFi . Specifically, expression (2.39b) shows that the
wavelength λω = 2π/kω of elementary waves in water of depth dω is given
by λω ∼ 2π

√
dω as dω→ 0 . Thus, only very short waves can exist in the

thin layer of water above the lid ΣHi if δ � 1 .

The boundary-value problem associated with the rigid-waterplane linear
flow model consists of the Laplace equation

∇2
ξϕ ≡ ∂

2
ξ ϕ+ ∂2

ηϕ+ ∂2
ζ ϕ = 0 in D (8.21a)

whereD denotes the flow region inside the closed boundary surface Σ defined
by (8.20) and Fig.8.2, the far-field boundary condition

ϕ→ 0 as
√
ξ2 + η2 →∞ (8.21b)

applied at Σ∞, the sea-bottom boundary condition

ϕ
ζ

= 0 at ΣB , (8.21c)
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the free-surface boundary conditions

ϕ
ζ
− f2

ε ϕ =

{
if pF− qF

0

}
at

{
ΣF

ΣFi

}
(8.21d)

and the body-surface boundary conditions{
n ·∇ξϕ = qH

ϕ
ζ

= 0

}
at

{
ΣH−

ΣHi

}
. (8.21e)

8.5 Rigid-waterplane boundary-integral
flow relations

Green’s fundamental identity (6.3) is now applied, in the flow region
bounded by the surface Σ defined by (8.20) and Fig.8.2, to the Green func-
tion G(ξ,x) determined by (8.5) and the flow potential ϕ(ξ) determined
by the boundary-value problem (8.21) associated with the rigid-waterplane
linear flow model.

Three complementary boundary-integral relations

Green’s relation (6.3) with ψ(ξ) ≡ G(ξ,x), the Laplace equation (8.21a),
the far-field boundary conditions (8.21b) and (8.5a), the sea-bottom bound-
ary conditions (8.21c) and (8.5b), and the body-surface boundary conditions
(8.21e) yield∫

D
dv ϕ∇2

ξG =

∫
ΣF ∪ ΣFi

dξdη (ϕGζ −Gϕζ )−
∫

ΣHi

dξdη ϕGζ

+

∫
ΣH−

da (GqH− ϕ n ·∇ξG) (8.22)

where G ≡ G(ξ,x) and ϕ ≡ ϕ(ξ) as was already noted. The unit vector
n ≡ n(ξ) normal to ΣH− points into the water, as is shown in Fig.8.2.

The identity (8.7) and the free-surface boundary conditions (8.21d) can
be used in the surface integral over the undisturbed free surface ΣF∪ΣFi in
(8.22). One then obtains∫

D
dv ϕ∇2

ξ G−
∫

ΣF ∪ ΣFi

dξdη ϕ (Gζ−f2
ε G) =∫

ΣH−

da (GqH− ϕ n ·∇ξG)−
∫

ΣHi

dξdη ϕ Gζ + φΣF (8.23)
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where φΣF is given by (8.12). The flow potential ϕ ≡ ϕ(ξ) in the integrals
over D and ΣF ∪ ΣFi in (8.23) is now expressed as ϕ = (ϕ − φ) + φ where
φ ≡ ϕ(x) is the flow potential at the point x in the Green function G(ξ,x) .
The relations (8.9) yield∫

D
dv ϕ∇2

ξ G−
∫

ΣF∪ΣFi

dξdη ϕ (Gζ−f2
ε G) = φ C (x) (8.24a)

where C (x) ≡
∫
D
dv ∇2

ξ G−
∫

ΣF ∪ ΣFi

dξdη (Gζ−f2
ε G) . (8.24b)

Equations (8.5c-d) then yield

C (x) =


1

0

1/2

 if x ∈


D ∪ ΣF ∪ ΣFi

Di
ΣH− ∪ ΣHi

 (8.25a)

where D∪ΣF∪ΣFi and Di denote the 3D regions located strictly outside or
inside the closed extended body surface ΣH− ∪ΣHi . The relations (8.23) and
(8.24a) yield

C (x) φ =

∫
ΣH−

da (GqH− ϕ n ·∇ξG)−
∫

ΣHi

dξdη ϕ Gζ + φΣF . (8.25b)

The relation (8.25b) and expressions (8.25a) yield the three boundary-
integral relations

φ =

∫
ΣH−

da (GqH− ϕ n ·∇ξG)−
∫

ΣHi

dξdη ϕGζ + φΣF

if x ∈ (D ∪ ΣF ∪ ΣFi ) , (8.26a)

φ

2
=

∫
ΣH−

da (GqH− ϕ n ·∇ξG)−
∫

ΣHi

dξdη ϕGζ + φΣF

if x ∈ (ΣH− ∪ ΣHi ) , (8.26b)

0 =

∫
ΣH−

da (GqH− ϕ n ·∇ξG)−
∫

ΣHi

dξdη ϕGζ + φΣF

if x ∈ Di . (8.26c)

The three complementary boundary-integral relations (8.26) include the dis-
tributions of dipoles ϕ n ·∇ξG and ϕGζ over the surface ΣH− ∪ ΣHi , which

create a discontinuous flow potential at ΣH− ∪ ΣHi as is explained in section
8.3. A boundary-integral relation that holds everywhere in the lower half
space z ≤ 0 and is equivalent to the three relations (8.26) is now obtained.
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Equivalent single weakly-singular boundary-integral relation

In accordance with expression (8.24b), the complementary function

Ci(x) ≡
∫
Di
dv ∇2

ξ G (8.27a)

is defined. Equations (8.5c-d) yield

Ci(x) =


0

1

1/2

 if x ∈


D ∪ ΣF ∪ ΣFi

Di
ΣH− ∪ ΣHi

 . (8.27b)

The relations (8.25a) and (8.27b) show that one has

C (x) + Ci(x) = 1 (8.28)

for every point x in the lower half space z ≤ 0 . The divergence theorem
applied in (8.27a) yields the alternative expression

Ci(x) =

∫
ΣH−

da n ·∇ξG+

∫
ΣHi

dξdη Gζ . (8.29)

Addition of the term Ci φ on the left and right sides of (8.25b), with
(8.28) or (8.29) used on the left or right sides, yields the boundary-integral
relation

φ =

∫
ΣH−

da [GqH+ (φ− ϕ) n ·∇ξG ] +

∫
ΣHi

dξdη (φ− ϕ)Gζ + φΣF (8.30)

where φΣF is given by (8.12). The boundary-integral relation (8.30) holds at
every point x and is equivalent to the three complementary relations (8.26).

Limit δ → 0

The boundary-integral relation (8.30), which holds for a closed body surface
ΣH− ∪ ΣHi that is submerged at a depth 0 < δ below the free-surface plane
ζ = 0 , is now considered in the limit δ → 0 . In this limit, one has ΣH−→ΣH

and ΣHi →ΣFi , and (8.30) becomes

φ =

∫
ΣH
da [GqH+ (φ− ϕ) n ·∇ξG ] + φFi + φΣF (8.31a)

where φFi ≡
∫

ΣFi

dξdη (φ− ϕ)Gζ . (8.31b)
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The identity

(φ− ϕ)Gζ = (φ− ϕ) (Gζ − f2
ε G) + f2

ε G (φ− ϕ)

and the free-surface boundary conditions in (8.5c-d) yield the alternative
expression

φFi = f2
ε

∫
ΣFi

dξdη (φ− ϕ)G (8.31c)

where fε can be replaced by f .

The boundary conditions (8.21d-e) at the waterplane ΣFi and at the rigid
lid ΣHi are compatible if one has

ϕ(ξ) = 0 for ξ ∈ ΣFi as δ → 0 . (8.32)

This compatibility condition and expressions (8.31b-c) yield

φFi = CΓφ where CΓ≡
∫

ΣFi

dξdη Gζ = f2

∫
ΣFi

dξdη G . (8.33)

The boundary-integral flow relation (8.31a) with φFi = CΓφ and CΓ given by
the second expression in (8.33) is identical to the boundary-integral relation
(8.18) associated with the free-waterplane boundary-value problem.

Representation of the function CΓ(x) as a waterline integral

The function CΓ(x) defined by the waterplane integral

CΓ(x) =

∫
ΣFi

dξdη Gζ (8.34a)

=

∫
ΣFi

dξdη
[
∇2
ξ G

ζ− (∂2
ξ + ∂2

η )Gζ
]
, (8.34b)

where ζ means integration with respect to ζ , can be expressed as a line
integral around the waterline Γ. For points x /∈ ΣFi , the Laplace equation
in (8.5d) if z = 0 or the Poisson equation in (8.5c) if z < 0 show that one
has ∇2

ξ G
ζ = 0 in (8.34b), which then becomes

CΓ = −
∫

ΣFi

dξdη (Gζ
ξξ +Gζ

ηη ) = −
∫

ΣFi

dξdη ∇̃ξ ·∇ξ Gζ

where ∇̃ξ ≡ (∂ξ , ∂η , 0). The 2D divergence theorem finally yields

CΓ(x) = −
∫

Γ

d` ν · ∇ξ Gζ = f2

∫
ΣFi

dξdη G (8.35)
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where the unit vector ν ≡ (νx, νy, 0) is normal to the waterline Γ and
points into the water, like the unit vector n , and the second expression
for the function CΓ in (8.33) was used. The function CΓ(x) defined by
the alternative expressions (8.35) are continuous in the entire lower half
space z ≤ 0 . However, the waterplane-integral representation (8.34a) is
discontinuous across the waterplane ΣFi .

8.6 Conclusion

Final boundary-integral relations

Expressions (8.31a), (8.33) and (8.35) finally yield

(1− CΓ) φ = φH + φΣF where (8.36a)

CΓ≡ −
∫

Γ

d` ν ·∇ξGζ = f2

∫
ΣFi

dξdη G , (8.36b)

φH ≡
∫

ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
, (8.36c)

φΣF≡
∫

ΣF
dξ dη

(
qF− if pF

)
G (8.36d)

with ϕ ≡ ϕ(ξ) and φ ≡ ϕ(x) . The weakly-singular boundary-integral flow
representation (8.36) holds in the entire lower half-space z ≤ 0 and yields
an integral equation that determines the unknown flow potential at the hull
surface of a body in regular waves [8,2]. The function CΓ(x) in (8.36a) is
explicitly defined via the alternative expressions (8.36b) as a line integral
around the waterline Γ of the body or as an integral over the waterplane
ΣFi inside the body surface ΣH .

Removal of irregular frequencies

As was already noted, the Green function G(ξ,x) associated with diffraction
and radiation of regular water waves is defined within the region −d ≤ ζ ≤ 0
and therefore creates waves outside as well as inside the body, which can
result in spurious solutions for some special wave frequencies called irregular
frequencies [8,3]. These spurious solutions can be prevented by imposing
that φ is nil at the waterplane ΣFi , which yields

φH + φΣF=

{
(1− CΓ)φ

0

}
if x ∈

{
ΣH

ΣFi

}
(8.37)

where φ ≡ ϕ(x). The pair of boundary-integral relations (8.37) applied at
x ∈ ΣH or at x ∈ ΣFi only involves the potential ϕ(ξ) at points ξ ∈ ΣH and
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therefore yields an overdetermined system of equations. The flow potential
ϕ(x) defined by the pair of integral equations (8.37) is free from irregular
frequencies [8,4] .

Free-waterplane and rigid-waterplane linear flow models

In the limit δ = 0, the flow region defined in Fig.8.2 associated with the
rigid-waterplane linear flow model is identical to the flow region associated
with the free-waterplane linear flow model and depicted in Fig.8.1. Thus,
the flow potentials ϕ that correspond to Fig.8.2 with δ = 0 or to Fig.8.1
satisfy the Laplace equation in identical flow regions and satisfy identical
boundary conditions at identical boundary surfaces ΣB , ΣF and ΣH .

In the free-waterplane linear flow model, Green’s identity is applied in
the flow region that is defined in the limit δ = 0 of the rigid-waterplane
model. However, in the rigid-waterplane model, Green’s identity is applied
in the flow region defined for 0 < δ, and the limit δ → 0 of the boundary-
integral flow representation is considered subsequently. Thus, the order of
the two processes ‘apply Green’s identity in a flow region’ and ‘consider the
limit δ → 0’ is interchanged in the free-waterplane and rigid-waterplane
linear flow models.

The agreement between the boundary-integral relations associated with
the classical free-waterplane linear flow model (in which Green’s identity is
applied to the flow region that corresponds to δ = 0) or the rigid-waterplane
flow model (in which Green’s identity is applied to the flow region that
corresponds to 0 < δ � 1 and the limit δ = 0 of the resulting boundary-
integral flow representation is then considered) shows that these linear flow
models are consistent for diffraction and radiation of regular waves by a
stationary body, and that the rigid waterplane ΣHi has no influence on the
velocity potential of the flow around the body surface ΣH outside the body
or at ΣH in that case.
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Chapter 9

Boundary-integral flow
relations for a ship that
advances through waves

The applications of Green’s fundamental boundary-integral relation (6.3)
to diffraction and radiation of regular waves by a stationary body (offshore
structure, moored ship) given in the previous chapter are now extended
to the more general, and more complicated, case of a ship that advances
through regular waves at a constant speed along a straight path. Both the
free-waterplane linear flow model, commonly called Neumann-Kelvin model,
and the rigid-waterplane flow model defined in chapter 8 are considered
again. Specifically, Green’s basic identity is applied to the usual Neumann-
Kelvin (NK) flow model in sections 9.1–9.3, and three variants of the rigid-
waterplane (RW) flow model are considered in sections 9.4–9.6. Thus, four
alternative linear flow models, and five related alternative boundary-integral
flow representations, are analyzed in sections 9.1–9.6. These alternative flow
models and flow representations are compared in section 9.7. In the special
case of a ship that steadily advances in calm water, an additional linear flow
model, called Neumann-Michell (NM) model, is defined in section 9.8. [9,1]

9.1 Neumann-Kelvin boundary-value
problem and related Green function

The flow created by a ship that advances, at a constant speed along a
straight path, through regular waves in deep water is considered in this
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Figure 9.1: Galilean system of Cartesian coordinates (x, y, z) and boundary
surface Σ ≡ Σ∞ ∪ ΣF ∪ ΣH associated with the basic Neumann-Kelvin
boundary-value problem for a ship that steadily advances through regular
waves in deep water.

chapter. As in chapters 1 and 6, the flow is observed from a Galilean
frame of reference that follows the ship, and a related system of Cartesian
coordinates x ≡ (x,y,z) and ξ ≡ (ξ,η,ζ) is defined. The z/ζ axis is vertical
and points upward, and the x/ξ axis is taken along the path of the ship and
points toward the ship bow, as in chapters 1 and 6. The coordinates ξ and
x, the corresponding flow potentials

ϕ ≡ ϕ(ξ) and φ ≡ ϕ(x) ,

and all other flow variables are nondimensional in terms of a reference length
Lr , usually chosen as the length Ls of the ship, the acceleration of gravity
g and (for the pressure) the water density ρw , as in section 1.5.

As in (1.34) and (6.19), the velocity potential of the flow created by the
ship is expressed as

ϕ̂(ξ, t) = Re ϕ(ξ) e (ε− if ) t = Re ϕ(ξ) e− ifε t (9.1a)

where fε ≡ f+ i ε with ε = +0 . (9.1b)

The spatial component ϕ(ξ) in (9.1a) is determined by a classical boundary-
value problem that is associated with the linear flow model called free-
waterplane flow model in chapter 8. For ships advancing in calm water
or through waves, this classical boundary-value problem is widely called
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Neumann-Kelvin (NK) problem, and this common name is used here-
after. The classical NK linear flow model and boundary-value problem are
associated with the closed boundary surface

Σ ≡ Σ∞∪ ΣF ∪ ΣH (9.2)

where Σ∞ is an infinitely large surface that encloses the flow region D, and
ΣF is the portion of the free-surface plane z = 0 that is inside Σ∞ but
outside the mean wetted ship-hull surface ΣH, as is shown in Fig.9.1. The
intersection curves between the free-surface plane z = 0 and the surfaces
Σ∞ and ΣH are denoted as Γ∞ or Γ, which are oriented as in Fig.9.1.
The portion of the plane z = 0 located inside the ship-hull surface ΣH is
denoted as ΣFi and called ‘ship waterplane’. The unit vector m normal to
the boundary surface Σ that encloses the flow region D points outside D,
whereas the unit vector n = −m normal to the ship-hull surface ΣH points
outside the ship (into the water).

Classical Neumann-Kelvin boundary-value problem

The spatial component ϕ(ξ) of the flow potential (9.1a) associated with
the free-waterplane flow model is determined by the NK boundary-value
problem (1.35), now restated for ease of reference. The flow potential ϕ(ξ)
satisfies the Laplace equation

∇2
ξ ϕ ≡ (∂2

ξ + ∂2
η + ∂2

ζ )ϕ = 0 in D (9.3a)

where D denotes the flow region outside the ship, the far-field condition

∇ξϕ→ 0 as ξ →∞ , (9.3b)

and the free-surface and ship-hull surface boundary conditions

∂ζϕ+ (ifε+F ∂ξ)
2ϕ = if pF +F pFξ − qF at ΣF (9.3c)

and n ·∇ξϕ = qH at ΣH . (9.3d)

The Froude number F and the non-dimensional wave frequency f in (9.3c)
are defined by (1.32). The flux qH at the ship-hull surface ΣH and the
pressure pF and flux qF at the free surface ΣF are presumed known in the
general boundary-value problem (9.3) that is considered in this chapter.

Green function for a ship advancing through regular waves

The Green function G(ξ,x) associated with the Laplace equation (9.3a),
the far-field condition (9.3b) and the boundary condition (9.3c) at the free
surface satisfies the far-field condition

G→ 0 as ξ→∞ (9.4a)
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and the field equations and free-surface boundary conditions{ ∇2
ξ G = δ(ξ − x) δ(η − y) δ(ζ− z) in ζ < 0

∂ζG+ (ifε−F ∂ξ )2G = 0 at ζ = 0

}
if z < 0 (9.4b)

or


∇2
ξ G = 0 in ζ < 0

∂ζG+ (ifε−F ∂ξ )2G =
− δ(ξ − x) δ(η − y) at ζ = 0

 if z = 0 . (9.4c)

The Green function G(ξ,x) defined by (9.4) represents the potential of
the flow that is created at a point (ξ, η, ζ ≤ 0) by a source located at a
point (x, y, z < 0) or a flux across the free surface at (x, y, z = 0). These
pulsating singularities (source or flux) steadily advance along the ξ axis at
a (nondimensional) speed −F, in accordance with the term −F ∂ξ in the
free-surface boundary conditions in (9.4b-c).

9.2 Neumann-Kelvin boundary-integral
flow relations

Green’s fundamental relation (6.3) is now applied, in the flow region
bounded by the surface Σ defined by (9.2) and Fig.9.1, to the Green func-
tion G(ξ,x) determined by (9.4) and the flow potential ϕ(ξ) determined by
the Neumann-Kelvin boundary-value problem (9.3).

Three complementary boundary-integral relations

Green’s relation (6.3) with ψ(ξ) = G(ξ,x), the Laplace equation (9.3a), the
far-field boundary conditions (9.3b) and (9.4a) and the boundary condition
(9.3d) at the hull surface yield∫

D
dv ϕ∇2

ξG =

∫
ΣF
dξdη (ϕ∂ζG−G∂ζϕ)

+

∫
ΣH
da (qHG− ϕ n ·∇ξG ) (9.5)

where G ≡ G(ξ,x) and ϕ ≡ ϕ(ξ) as was already noted. Furthermore,
da ≡ da(ξ) and qH ≡ qH(ξ) denote the differential element of area or the
hull-flux at a point ξ of the hull surface ΣH , and dv ≡ dv(ξ) is the differential
element of volume at a point ξ∈ D.

The identity

ϕ∂ζG−G∂ζϕ =ϕ
[
∂ζG+ (ifε−F ∂ξ )2G

]
−G

[
∂ζϕ+ (ifε+F ∂ξ )2ϕ

]
+ F ∂ξ [F (G∂ξϕ− ϕ∂ξG) + 2 ifεGϕ ]
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applied in the integral over the free surface ΣF in (9.5), together with the
free-surface boundary condition (9.3c), Stokes’ theorem and the far-field
conditions (9.3b) and (9.4a), yield∫

D
dv ϕ∇2

ξ G−
∫

ΣF
dξdη ϕ

[
∂ζG+ (ifε−F ∂ξ )2G

]
=

F

∫
Γ

dη [F (G∂ξϕ− ϕ ∂ξG) + 2 ifεGϕ ]+

∫
ΣH
da
[
qHG− ϕ n ·∇ξG

]
+

∫
ΣF
dξdη

[
qF−F pFξ − if pF

]
G (9.6)

where the mean ship waterline Γ is oriented in the clockwise direction when
viewed from above the free surface as is shown in Fig.9.1.

The flow potential ϕ ≡ ϕ(ξ) in the integrals over D and ΣF on the left
side of (9.6) is now expressed as ϕ = (ϕ−φ) +φ where φ ≡ ϕ(x) is the flow
potential at the source-point x in the Green function G(ξ,x) . The relations∫

D
dv (ϕ− φ)∇2

ξ G = 0 and∫
ΣF
dξdη (ϕ− φ)

[
∂ζG+ (ifε−F ∂ξ )2G

]
= 0 ,

which follow from the relations (9.4b-c) and (6.6), yield∫
D
dv ϕ∇2

ξ G−
∫

ΣF
dξdη ϕ

[
∂ζG+ (ifε−F ∂ξ )2G

]
= φ C (x) (9.7a)

where C (x) ≡
∫
D
dv∇2

ξ G−
∫

ΣF
dξdη

[
∂ζG+ (ifε−F ∂ξ )2G

]
. (9.7b)

Equations (9.4b-c) yield

C (x) =


1

0

1/2

 if x ∈


D ∪ ΣF

Di ∪ ΣFi

ΣH ∪ Γ

 (9.8a)

where D ∪ ΣF and Di ∪ ΣFi denote the 3D regions and the portions of the
free-surface plane ζ = 0 that are located strictly outside or inside the mean
wetted ship-hull surface ΣH ∪ Γ. The relations (9.6) and (9.7a) yield

C (x) φ =

∫
ΣH
da
[
qHG− ϕ n ·∇ξG

]
+ F

∫
Γ

dη [F (G∂ξϕ− ϕ ∂ξG) + 2 ifεGϕ ]+ φΣF (9.8b)

where φΣF≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G . (9.8c)
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Explicit solution in a special case

In the special (and simplest) case when no ship-hull surface ΣH exists, both
the relations (9.7b) and (9.8a) yield C = 1 in the entire flow region z ≤ 0 ,
and the boundary-integral relation (9.8b) explicitly determines the velocity
potential of the flow created by a distribution of pressure pF(ξ, η) and/or
flux qF(ξ, η) at the free surface ΣF as

φ = φΣF≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G . (9.9)

This explicit expression for the velocity potential φ of the flow created by
a prescribed distribution of pressure pF and/or flux qF at the free surface
ΣF can also be directly obtained via Fourier transformation of the reduced
boundary-value problem defined by (9.3a-c).

Equivalent single weakly-singular boundary-integral relation

Expressions (9.8) yield three boundary-integral identities that hold inside,
outside or at the ship-hull surface. An equivalent boundary-integral identity
that holds everywhere in the lower half space z ≤ 0 is now obtained. In
accordance with expression (9.7b), the complementary function

Ci(x) ≡
∫
Di
dv∇2

ξ G−
∫

ΣFi

dξdη
[
∂ζG+ (ifε−F ∂ξ )2G

]
(9.10a)

is defined. Equations (9.4b-c) yield

Ci(x) =


0

1

1/2

 if x ∈


D ∪ ΣF

Di ∪ ΣFi

ΣH ∪ Γ

 . (9.10b)

The relations (9.8a) and (9.10b) show that one has

C (x) + Ci(x) = 1 (9.11)

at every point x in the lower half space z ≤ 0 .

The divergence theorem applied in (9.10a) yields

Ci(x) =

∫
ΣH
da n ·∇ξG+ f2

ε

∫
ΣFi

dξdη G− F
∫

ΣFi

dξdη ∂ξ (F ∂ξ − 2 ifε )G .

Stokes’ theorem finally yields the alternative expression

Ci(x) =

∫
ΣH
da n ·∇ξG+ f2

ε

∫
ΣFi

dξdη G+ F

∫
Γ

dη (F ∂ξ − 2 ifε)G (9.12)
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where the waterline Γ is oriented as in Fig.9.1.

Addition of the term Ciφ on the left and right sides of (9.8b), with (9.11)
or (9.12) used on the left or right sides, yields the boundary-integral relation

φ =

∫
ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
+f2

ε φ

∫
ΣFi

dξdη G

+F

∫
Γ

dη [FG ∂ξϕ+ (φ− ϕ)(F Gξ − 2 ifεG)]

+

∫
ΣF
dξdη

[
qF−F pFξ − if pF

]
G . (9.13)

The boundary-integral relation (9.13) holds at every point (x, y, z ≤ 0)
and is equivalent to the three relations (9.8) with C (x) = 1, 0 or 1/2 for
points x in the flow region D ∪ ΣF , the region Di ∪ ΣFi inside the ship, or
at the ship-hull surface ΣH ∪ Γ. The term φ − ϕ ≡ ϕ(x) − ϕ(ξ) in (9.13)
vanishes if the points ξ and x in the Green function G(ξ,x) coincide. The
singularities in the integrands

ϕ n ·∇ξG and ϕ Gξ (9.14a)

of the integrals over the hull surface ΣH or the waterline Γ in (9.8b) are
then weakened in the integrands

(φ− ϕ) n ·∇ξG and (φ− ϕ)Gξ (9.14b)

of the corresponding integrals in (9.13). As a result, the hull-surface or
waterline integrals of the functions (9.14b) are continuous at the ship-hull
surface ΣH∪Γ, whereas the corresponding integrals of the functions (9.14a)
are discontinuous, in accordance with the jump in the value of C (x) across
the surface ΣH ∪ Γ.

9.3 Neumann-Kelvin flow representation
and particular cases

The boundary-integral relation (9.13), with fε denoted as f, finally yields[
1−f2

∫
ΣFi

dξdη G

]
φ =

∫
ΣF
dξdη

[
qF−F pFξ − if pF

]
G

+

∫
ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
(9.15)

+F

∫
Γ

dη [FG ∂ξϕ+ (φ− ϕ)(F Gξ − 2 if G)] .

This boundary-integral flow representation is called Neumann-Kelvin
(NK) flow representation hereafter. [9,2]
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FIVE PARTICULAR CASES

In the particular case of a ship that steadily advances in calm water,
one has f = 0 and the NK flow representation (9.15) becomes

φ =

∫
ΣF
dξdη

[
qF−F pFξ

]
G+

∫
ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
+F 2

∫
Γ

dη [G∂ξϕ+ (φ− ϕ)Gξ ] . (9.16)

In the particular case of a stationary body in regular waves, i.e. in
the special case F = 0 , the line integral around the body waterline Γ in the
Neumann-Kelvin flow representation (9.15) disappears, and (9.15) becomes[

1−f2

∫
ΣFi

dξdη G

]
φ =

∫
ΣF
dξdη

[
qF− if pF

]
G

+

∫
ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
(9.17)

in agreement with the boundary-integral flow representation defined by
(8.18) and (8.12).

In the particular case of a body that is fully submerged under the
free-surface plane ζ = 0 , the integral over the waterplane ΣFi and the
integral around the ship waterline Γ in the Neumann-Kelvin flow represen-
tation (9.15) disappear. This flow representation then becomes

φ =

∫
ΣF

dξdη
[
qF−F pFξ − if pF

]
G

+

∫
ΣH

da
[
qHG+ (φ− ϕ) n ·∇ξG

]
(9.18)

where ΣF denotes the entire plane ζ = 0, and the (closed) surface of the
fully submerged body is denoted as ΣH .

If no body surface ΣH exists, the flow representation (9.18) becomes

φ =

∫
ΣF

dξdη
[
qF−F pFξ − if pF

]
G (9.19)

in agreement with expression (9.9) for the potential φ of the flow created
by a free-surface distribution of pressure pF and/or flux qF.

The Neumann-Kelvin flow representation (9.15) is significantly different
for the general case Ff 6= 0 and the particular cases f = 0 or F = 0 . In
particular, the Neumann-Kelvin flow representations (9.15) and (9.16) for
a ship that advances through regular waves or in calm water contain line
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Figure 9.2: Boundary surface Σ ≡ Σ∞ ∪ ΣF ∪ ΣFi ∪ ΣHi ∪ ΣH− related to
the rigid-waterplane linear flow model. The unit vector m normal to the
boundary surface Σ points outside the flow region, whereas the unit vector
n = −m normal to the ship hull surface ΣH− points outside the ship.

integrals around the ship waterline Γ and these waterline integrals involve
the flow potential ϕ and its derivative ∂ξϕ, whereas the Neumann-Kelvin
representation (9.17) for an offshore structure in waves does not contain a
waterline integral and the flow potential ϕ only appears at the hull surface
ΣH . The boundary-integral flow representations (9.15) and (9.16) for a ship
that steadily advances through regular waves or in calm water are then much
more complicated than the boundary-integral flow representation (9.17) for
wave diffraction-radiation by a stationary body.

9.4 Basic rigid-waterplane (RW) flow model
and RW flow representation

The flow representation (9.18) for a general closed body surface ΣH that
is fully submerged under the free-surface plane ζ = 0 is now applied to a
particular type of submerged bodies. Specifically, the body surface

ΣH ≡ ΣH− ∪ ΣHi , (9.20a)

where ΣHi denotes a rigid horizontal lid that closes the open body surface
ΣH− as is illustrated in Fig.9.2, is considered. The free surface ΣF associated
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with this special submerged closed body consists of the entire plane ζ = 0
and is given by

ΣF ≡ ΣF ∪ ΣFi (9.20b)

where ΣFi denotes the portion of the free surface that is above the rigid
body lid ΣHi as is shown in Fig.9.2.

The free-surface and hull-surface boundary conditions (9.3c-d) yield

∂ζϕ+ (ifε+F ∂ξ)
2ϕ =

{
if pF +F pFξ − qF

0

}
at

{
ΣF

ΣFi

}
(9.21a)

and

{
n ·∇ξϕ = qH

ϕ
ζ

= qHi = 0

}
at

{
ΣH−

ΣHi

}
. (9.21b)

The flow representation (9.18) for a general submerged closed body then
becomes

φ = φΣF + φH− + φHi where (9.22a)

φΣF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G , (9.22b)

φH− ≡
∫

ΣH−

da
[
qHG+ (φ− ϕ) n ·∇ξG

]
(9.22c)

and φHi ≡
∫

ΣHi

da (φ− ϕ) Gζ . (9.22d)

This flow representation holds for any submergence depth δ (large or small)
of the horizontal rigid lid ΣHi below the free surface. The rigid-waterplane
(RW) linear flow model defined in section 8.4 and in Fig.9.2 considers the
special case when the rigid horizontal lid ΣHi of the closed body ΣH− ∪ ΣHi
is submerged at an infinitesimally small depth 0 < δ � 1.

In the limit δ → 0, one has ΣH− → ΣH and ΣHi → ΣFi . The boundary-
integral flow representation (9.22) then becomes

φ = φΣF+ φH + φFi where (9.23a)

φΣF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G , (9.23b)

φH ≡
∫

ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
with qH ≡ n · ∇ϕ , (9.23c)

φFi ≡
∫

ΣFi

dξdη (φ− ϕ)Gζ =

∫
ΣFi

dξdη (φ− ϕ)(f+ iF ∂ξ )2G . (9.23d)

The free-surface boundary conditions in (9.4b-c) were used in (9.23d).

The RW flow representation defined by (9.23) does not contain a
line integral around the ship waterline Γ, but includes the surface integral
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φFi over the ship waterplane ΣFi . Thus, the RW flow representation (9.23)
yields an integral equation that determines the flow potential ϕ over the
extended closed ship hull surface ΣH ∪ ΣFi .

9.5 2D-flow at the ship waterplane, and
RW-hw and RW-h flow representations

The flow within the thin water-layer −δ < z ≤ 0 is now analyzed based on
the assumption that the boundary conditions

∂ζϕ = 0 at ΣHi and (9.24a)

∂ζϕ+ (ifε+F ∂ξ )2ϕ = 0 at ΣFi (9.24b)

are both satisfied, and that the flow in the thin water-layer −δ < z ≤ 0
is two dimensional and hence determined by a flow potential ϕ(ξ, η) that
satisfies the 2D Laplace equation. One then has

ϕξξ + ϕηη = 0 if (ξ, η, 0) ∈ ΣFi and − δ < ζ ≤ 0 (9.25a)

and F 2ϕξξ + 2 i fF ϕξ − f2ϕ = 0 if ξ ∈ ΣFi (9.25b)

where fε is denoted as f in (9.25b). In the particular case of an offshore
structure in regular waves, one has F = 0 and (9.25b) becomes

ϕ = 0 if ξ ∈ ΣFi (9.26)

in agreement with (8.32).

Analysis of 2D flow in the thin water-layer above the rigid lid ΣHi

The general solution of equation (9.25b) in the general case f/F 6= 0 is

ϕ = [H1(η) + ξH2(η)] e− i ξf/F

where H1(η) and H2(η) are undetermined functions. The Laplace equation
(9.25a) then yields

H ′′1 (η) + ξH ′′2 (η) = (f/F )2 [H1(η) + ξH2(η)] + 2 i (f/F )H2(η) .

This equation, which holds for all values of ξ, yields

H ′′2 − (f/F )2H2 = 0 and H ′′1 − (f/F )2H1 = 2 i (f/F )H2 .

If f/F 6= 0, one then has

H2 = C+
2 e

ηf/F + C−2 e
−ηf/F and

H1 = C+
1 e

ηf/F + C−1 e
−ηf/F + i η

[
C+

2 e
ηf/F − C−2 e−ηf/F

]
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where C±2 and C±1 are undetermined. The potential ϕ of the 2D flow within
the thin layer of water between the surfaces ΣHi and ΣFi is then given by

ϕ =
[
C+

1 + C+
2 (ξ + i η)

]
e− i (ξ+i η)f/F

+
[
C−1 + C−2 (ξ − i η)

]
e− i (ξ− i η)f/F if f/F 6= 0 . (9.27)

The particular solutions C±1 = 0 and C±2 = 0 yield the ‘no-flow’ solution
(9.26).

In the special case f/F = 0 , i.e. for a ship that steadily advances in
calm water, equations (9.25) yield

ϕξξ = 0 and ϕηη = 0 if ξ ∈ ΣFi . (9.28a)

The potential ϕ of the 2D flow within the thin layer of water between the
surfaces ΣHi and ΣFi is then given by

ϕ = C0 + C1 ξ + C2 η + C3 ξ η if f/F = 0 (9.28b)

where C0 , C1 , C2 and C3 are undetermined. The particular solutions Cn = 0
with 0 ≤ n ≤ 3 yield the ‘no-flow’ solution (9.26). The 2D flow velocity
defined by (9.28b) at a point (ξ, η) ∈ ΣFi is given by

(∂ξϕ, ∂ηϕ) = (C1, C2) + C3(η, ξ)

where (C1, C2) evidently is a uniform stream and C3(η, ξ) corresponds to a
stagnation flow within the corners defined by the lines η = ±ξ .

RW-hw FLOW REPRESENTATION

The waterplane integral φFi in the basic RW flow representation (9.23)
is now considered. The first waterplane-integral expression in (9.23d) yields

φFi ≡
∫

ΣFi

dξdη (φ− ϕ)Gζ =

∫
ΣFi

dξdη (φ− ϕ)
[
∇2
ξ G

ζ− (∂2
ξ + ∂2

η )Gζ
]

where ζ means integration with respect to ζ . The Poisson and Laplace
equations in (9.4b-c) yield

φFi =

∫
ΣFi

dξdη (ϕ− φ)(∂2
ξ + ∂2

η )Gζ =

∫
ΣFi

dξdη (ϕ− φ) ∇̃ξ · ∇̃ξ Gζ

where ∇̃ξ ≡ (∂ξ, ∂η ) . The relation

(ϕ− φ) ∇̃ξ · ∇̃ξ Gζ = ∇̃ξ ·
[

(ϕ− φ) ∇̃ξGζ −Gζ ∇̃ξϕ
]

+Gζ ∇̃ξ · ∇̃ξ ϕ
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where one has ∇̃ξ · ∇̃ξ ϕ = ϕξξ + ϕηη = 0 in accordance with the Laplace

equation (9.25a) associated with a 2D flow in the thin water-layer above
the rigid lid ΣHi that closes the ship-hull surface ΣH− in the rigid-waterplane
flow model. The 2D divergence theorem finally yields

φFi = −
∫

Γ

d`
[
qΓGζ + (φ− ϕΓ) ν ·∇ξGζ

]
where qΓ ≡ ν ·∇ξϕΓ (9.29)

and the unit vector ν ≡ (νx, νy, 0) is normal to the waterline Γ and points
into the water, like the unit vector n normal to the ship-hull surface ΣH . The
notation ϕΓ in expression (9.29) emphasizes the fact that the flow potential
ϕ is evaluated at the ship waterline Γ in this expression. The waterline
integral (9.29) is simpler than the waterline integral in the Neumann-Kelvin
representation (9.15). In particular, the waterline integral in the Neumann-
Kelvin representation (9.15) involves the derivative ∂ξϕ of the flow potential
ϕ whereas the rigid-waterplane flow representation defined by (9.23a-c) and
(9.29) only involves ϕ.

The boundary-integral representation (9.23a-c), (9.29) contains both the
integral (9.23b) over the ship-hull surface ΣH and the integral (9.29) over
the ship waterline Γ, and is then identified as the RW-hw boundary-
integral flow representation.

RW-h FLOW REPRESENTATION

The integrands of the hull-surface and waterline integrals (9.23c) and (9.29)
in the RW-hw flow representation are identical except for the fact that the
Green function G in the hull-surface integral (9.23c) is replaced by Gζ in the
waterline integral (9.29). The similarity of the integrands of the hull-surface
and waterline integrals (9.23b) and (9.29) in the RW-hw flow representation
suggest that the waterline integral (9.29) can be combined with the hull-
surface integral (9.23b) as is most readily shown for a wall-sided ship-hull
surface ΣH and is now considered.

Expressions (9.23c) and (9.29) yield

φH + φFi =

∫
ΣH
da AH−

∫
Γ

d` AΓ where (9.30a)

AH ≡ qHG+ (φ− ϕ) n ·∇ξG with qH ≡ n ·∇ξϕ and (9.30b)

AΓ≡ qΓGζ + (φ− ϕΓ) ν ·∇ξGζ with qΓ ≡ ν ·∇ξϕΓ . (9.30c)

The waterline-integral representation of the potential φFi in (9.30a) can be
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expressed as the hull-surface integral

φFi = −
∫

ΣH
da ∂ζ

(
EAΓ

)
= −

∫
ΣH
da
(
EAΓ

ζ + EζA
Γ
)

(9.31a)

where E ≡ E(ζ) ≡ e−9 ζ2/d2
∗ (9.31b)

and d∗ is a fraction of the nondimensional draft D/L of the ship. The
function E(ζ) vanishes rapidly as ζ → −∞ and one has E(0) = 1 and
Eζ(0) = 0 . Expressions (9.30a) and (9.31) then yield

φH + φFi =

∫
ΣH
da AHΓ where AHΓ ≡ AH− EAΓ

ζ − EζAΓ (9.32)

and AH , AΓ and E are defined by expressions (9.30b-c) and (9.31b), which
show that one has AHΓ = 0 at Γ. Thus, the integrand AHΓ of the surface
integral (9.32) vanishes at the ship waterline Γ, which implies numerical
cancellations between the hull-surface integral (9.23c) and the waterline
integral (9.29) or the equivalent waterplane integral (9.23d).

The RW flow representation defined by (9.23a-b) and (9.32) only contains
an integral over the ship-hull surface ΣH , i.e. does not contain a line integral
around the ship waterline Γ, although the integrand AHΓ in (9.32) involves
the flow potential ϕΓ at Γ. The flow representation defined by (9.23a-b) and
(9.32) is then identified as the RW-h flow representation.

9.6 No-flow at the ship waterplane,
and NN flow representation

The RW flow representation (9.23) associated with the basic rigid-
waterplane (RW) linear flow model allows a flow within the thin sheet of
water above the rigid lid ΣHi . A flow at the ship waterplane ΣFi is also
allowed, but presumed 2D, in the RW-hw flow representation defined
by (9.23a-c) and (9.29) and in the RW-h flow representation defined by
(9.23a-b) and (9.32) with (9.31b) and (9.30b-c). The special case in which
no flow is allowed at the ship waterplane ΣFi is now considered.

The no-flow assumption in the rigid-waterplane flow model

Thus, the rigid-waterplane (RW) linear flow model with the fundamental
waterplane restriction

ϕ(ξ) = 0 if ξ ∈ ΣFi (9.33)

in the limit δ = 0 is now considered.
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The assumption (9.33) may arguably be justified by the fact that the
direction of the unit vector n normal to the body surface ΣH− ∪ ΣHi is
discontinuous along the waterline Γ, and the flow velocity can therefore be
unbounded at Γ; Indeed, an unbounded flow velocity at Γ can arguably be
avoided if the ‘no-flow’ restriction (9.33) is imposed within the thin sheet
of water between the rigid lid ΣHi and the waterplane ΣFi . Moreover, the
cancellations between the contributions of the ship-hull surface ΣH and the
waterplane ΣFi noted in section 9.5 arguably also suggest that the restriction
(9.33) might be a reasonable assumption. Lastly, the assumption that the
thin sheet of water above the rigid lid ΣHi is a ‘dead-water’ region can be
argued to imply that the flows around the closed body surface ΣH− ∪ ΣHi
and the free-surface piercing ship-hull surface ΣH are practically identical,
as is essentially presumed in the rigid-waterplane linear flow model. [9,3]

The restriction ϕ = 0 at the interior waterplane ΣFi does not necessarily
imply that ϕ = 0 along the waterline Γ or at the free surface ΣF outside
Γ because the flow potential ϕ(ξ, η, ζ = 0) may be discontinuous across Γ.
Such a case can easily be imagined. E.g. if θ denotes the angle between
the interior waterplane ΣFi and the vector that joins a point xΓ ∈ Γ to a
point x in the vicinity of xΓ, one has θ = 0 and sin(θ/2) = 0 if x ∈ ΣFi ,
θ = π and sin(θ/2) = 1 if x ∈ ΣF , and θ = π/2 and sin(θ/2) = 1/

√
2

for a point x ∈ ΣH if the hull surface ΣH is vertical at x. Thus, the value
of the function sin(θ/2) depends on the direction of approach to the point
xΓ ∈ Γ. Such a behavior, or more complicated and stronger singularities
of the flow potential ϕ at the waterline Γ cannot be ruled out as a result
of incompatibilities between the hull-surface boundary condition and the
linearized free-surface boundary condition. [9,4]

Neumann-Noblesse (NN) flow representation

The restriction (9.33) applied in expression (9.23d) yields

φFi = φ CΓ where (9.34a)

CΓ =

∫
ΣFi

dξdη Gζ =

∫
ΣFi

dξdη (f+ iF ∂ξ )2G . (9.34b)

Expressions (8.34a) and (8.35) yield the alternative expression

CΓ = −
∫

Γ

d` ν · ∇ξ Gζ . (9.34c)

Expression (9.34c) and the second expression in (9.34b) are continuous in
the entire lower half space z ≤ 0. However, the first expression in (9.34b) is
discontinuous across the waterplane ΣFi .
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The flow representation (9.23a-c) with expression (9.34a) for the poten-
tial φFi readily yield (

1− CΓ
)
φ = φΣF+ φH (9.35a)

where the potentials φΣF and φH and the function CΓ(x) are defined by
expressions (9.23b-c) and (9.34b-c) as

φΣF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G , (9.35b)

φH ≡
∫

ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
and (9.35c)

CΓ = −
∫

Γ

d` ν · ∇ξ Gζ =

∫
ΣFi

dξdη (f+ iF ∂ξ )2G . (9.35d)

The boundary-integral flow representation (9.35) holds in the entire lower
half space z ≤ 0 . This flow representation only involves the flow poten-
tial ϕ ≡ ϕ(ξ) at the ship-hull surface ΣH , and hence provides an integral
equation that determines the unknown potential φ ≡ ϕ(x) at ΣH for a
ship that steadily advances through regular waves or in calm water, as well
as for a stationary body in regular waves. Indeed, the flow representation
(9.35) is identical to the flow representation (8.36) obtained in chapter 8
for diffraction-radiation of regular waves by an offshore structure. The flow
representation (9.35) was obtained, over 40 years ago, in Noblesse (1983)
for the particular case of diffraction-radiation of regular water waves by a
stationary body and is then identified as the NN flow representation.

Flow-field point x outside the ship-hull surface

The NN flow representation (9.35) can be expressed as

φ = φΣF+

∫
ΣH
da
[
qHG− ϕ n ·∇ξG

]
+ C φ

where C ≡
∫

ΣFi

dξdη Gζ +

∫
ΣH
da n ·∇ξG

is the flux through the closed surface ΣFi ∪ΣH due to a submerged source, or
a flux through the free-surface plane, at the singularity point x in the Green
function G. One has C = 0 if x ∈ (D ∪ ΣF ). Thus, the flow representation
(9.35) expresses the flow potential φ ≡ ϕ(x) at a point x in the flow region
outside the ship-hull surface as

φ = φΣF+

∫
ΣH

da
[
qHG− ϕ n ·∇ξG

]
(9.36)

where the flow potential ϕ ≡ ϕ(ξ) at ΣH is determined by the NN boundary-
integral equation (9.35).
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9.7 Alternative linear flow models and
boundary-integral flow representations

Four alternative linear flow models, and five related alternative boundary-
integral flow representations, are considered in sections 9.2-9.6. These linear
flow models and flow representations are

(i) the classical NK (Neumann-Kelvin) linear flow model and NK flow
representation (9.15) considered in sections 9.1-9.3,

(ii) the basic RW (Rigid-Waterplane) flow model and the corresponding
RW flow representation (9.23) considered in section 9.4,

(iii) the RW flow model with a 2D flow assumption at the ship water-
plane and the two related RW-hw flow representation (9.23a-c), (9.29)
and RW-h flow representations (9.23a-b), (9.32) given in section 9.5,

(iv) and the NN linear flow model and NN flow representation (9.35),
based on the RW flow model with a no-flow restriction at the ship water-
plane, analyzed in section 9.6.

The NK flow representation (9.15) contains a line integral around the
ship waterline Γ that involves the unknown flow potential ϕ and its deriva-
tive ∂ξϕ. Thus, this flow representation determines ϕ(x) at (ΣH∪Γ) via an
integro-differential equation, whereas the four flow representations obtained
from three variants of the rigid-waterplane flow model do not involve ∂ξϕ
and determine ϕ(x) via integral equations.

The RW and RW-hw flow representations involve a surface integral over
the ship waterplane ΣFi or a line integral around the ship waterline Γ. The
RW-h flow representation does not contain a line integral around Γ. How-
ever, this flow representation involves the flow potential ϕ at Γ.

The NN flow representation includes neither a waterline nor a waterplane
integral, and does not involve the flow potential ϕ at Γ. Indeed, CΓ in (9.35a)
is a function of x that is explicitly defined via the alternative expressions
(9.35d). Thus, the NN flow representation (9.35) yields an integral equation
that determines ϕ at the ship-hull surface ΣH .

Differences between the alternative flow representations considered
above are ultimately related to the fact that they stem from different linear
flow models. In particular, the ship waterline Γ in the NK flow model is the
intersection curve of two surfaces: the free surface ΣF and the mean wetted
ship-hull surface ΣH , where the linear free-surface boundary condition (9.3c)
or the hull-surface boundary condition (9.3d) are applied. However, in the
RW-hw, RW-h and NN flow models, the waterline Γ separates three sur-
faces: the free surface ΣF, the hull surface ΣH and the ship waterplane ΣFi
where different boundary conditions hold: the free-surface condition (9.3c),
the hull-surface condition (9.3d), and either the 2D flow condition (9.25)
or the no-flow condition (9.33). Although the flow potentials ϕ determined
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by the five alternative flow representations defined in sections 9.2-9.6 all
satisfy the Laplace equation and identical boundary conditions at the free
surface and at the ship-hull surface, differences or incompatibilities between
these boundary conditions may result in different local behaviors of the flow
potential, and possibly different flow singularities, at Γ. [9,4] and [9,5] .

As is noted at the end of chapter 8, the classical NK approach and the
alternative approach based on the rigid-waterplane flow model correspond
to a reversal of the order of the two processes ‘apply Green’s identity in
a flow region’ and ‘consider the limit δ → 0’ in rigid-waterplane model.
Specifically, in the NK linear flow model (called free-waterplane model in
chapter 8), Green’s identity is applied in the flow region that is defined in
the limit δ = 0 of the rigid-waterplane model. However, Green’s identity
is applied in the flow region defined for 0 < δ, and the limit δ → 0 of the
boundary-integral flow representation is considered in the rigid-waterplane
model. This linear flow model allows alternative assumptions about the
flow in the thin layer of water −δ < ζ ≤ 0 above the rigid lid that closes
the ship hull in this flow model.

The NK and NN flow representations

The NK flow representation (9.15) can be expressed as(
1− CΓ

∗
)
φ = φΣF+ φH + φΓ where (9.37a)

φΓ ≡ F
∫

Γ

dη [F (G∂ξϕ− ϕ ∂ξG) + 2 if Gϕ ] (9.37b)

and the potentials φΣF and φH are defined by (9.23b-c). Moreover, CΓ
∗ in

(9.37a) is given by

CΓ
∗ ≡ f2

∫
ΣFi

dξdη G+F

∫
Γ

dη (F Gξ − 2 if G)

=

∫
ΣFi

dξdη
[
f2G− F ∂ξ (F Gξ − 2 if G)

]
=

∫
ΣFi

dξdη Gζ = CΓ

where Stokes’ theorem, the free-surface boundary condition in (9.4b), and
(9.34b) were used. The potential φΓ defined by (9.37b) and the waterline
integral in (9.8b) are identical. Thus, the NK flow representation (9.15)
contains the waterline integral φΓ, which does not appear in the NN flow
representation (9.35). The NK and NN flow representations (9.15) and
(9.35) define different flow potentials φ ≡ ϕ(x) unless the integral (9.37b)
around the ship waterline is nil. This waterline integral is nil if ϕ = 0 at Γ
but may not be nil in general. Thus, the NK and NN flow representations
might determine different flow potentials φ ≡ ϕ(x) . [9,5]
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The NN flow representation (9.35) evidently is considerably simpler than
the NK representation (9.15). In particular, the NK flow representations
associated with an offshore structure in regular waves or a ship that advances
in calm water or through regular waves differ significantly, as is shown in
section 9.3, whereas the NN flow representation (9.35) holds for a ship that
advances in calm water or through waves, as well as for an offshore structure
in waves as is shown in chapter 8. [9,6].

9.8 Neumann-Michell (NM) flow model for
a ship that advances in calm water

Four alternative linear flow models—the classical NK model, the basic RW
model, and the RW model with ‘2D-flow’ or ‘no-flow’ assumptions at the
ship waterplane—have already been considered [9,7]. Other linear flow
models can be considered, as is now illustrated for a ship that steadily
advances in calm water.

The NK flow model and boundary-integral flow representation

In the special case f = 0 now considered, the NK boundary-integral flow
representation (9.16) can be expressed as

φ =

∫
ΣF
dξdη

[
qF−F pFξ

]
G+ ψH +

∫
ΣH
da (φ− ϕ) n ·∇ξG

+F 2

∫
Γ

dη (φ− ϕ)Gξ+ ψΓ where (9.38a)

ψH ≡
∫

ΣH
da G qH and ψΓ≡F 2

∫
Γ

dη G∂ξϕ . (9.38b)

The hull-surface flux qH and the linear free-surface elevation zF for a ship
that advances in calm water are determined by (1.36) and (1.37a) as

qH = F nx and zF = F ∂ξϕ .

The potentials ψH and ψΓ defined by (9.38b) then become

ψH ≡ F
∫

ΣH
da G nx and ψΓ ≡F

∫
Γ

dη G zF . (9.39)

The NM flow model and boundary-integral flow representation

In the classical NK linear flow model, ΣH in (9.39) is the mean wetted ship-
hull surface below the undisturbed free-surface plane ζ = 0. However, ΣH is
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taken as the wetted hull surface below the actual free surface ζ = zF in the
alternative linear flow model—called Neumann-Michell (NM) model—that
is now considered. Indeed, the difference between these two wetted hull
surfaces yields a linear contribution to the hull-surface potential ψH that
arguably should not be ignored in a consistent linear flow model. Thus, the
hull-surface potential ψH defined by (9.39) is now expressed as

ψH = ψH0 + ψH∗ where ψH0 ≡ F
∫

ΣH0

da G nx

represents the contribution of the mean wetted ship-hull surface, denoted
as ΣH0 for clarity, and ψH∗ accounts for the contribution of the narrow band
of water between the undisturbed free-surface plane ζ = 0 and the linear
approximation to the actual free surface ζ = zF ≈ F ∂ξϕ . The relation

nxda = −ty d` dζ ,

where the unit vector t ≡ (tx, ty, 0) is tangent to the waterline Γ and oriented
like Γ, yields

ψH∗ ≈−F
∫

Γ

d` ty G

∫ zF

0

dζ = −F
∫

Γ

d` ty GzF .

This expression and expression (9.39) for ψΓ show that one has ψH∗ = −ψΓ.

Thus, the waterline integral ψΓ in the NK flow representation (9.38a) and
the contribution ψH∗ of the narrow band of water between the undisturbed
free-surface plane ζ = 0 and the free surface ζ = zF in the hull-surface
potential ψH cancel out, and the NK boundary-integral flow representation
(9.16) then becomes

φ =

∫
ΣF
dξdη

[
qF−F pFξ

]
G+

∫
ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
+F 2

∫
Γ

dη (φ− ϕ)Gξ (9.40)

where ΣH is the mean wetted ship-hull surface. The boundary-integral flow
representation (9.40) associated with the Neumann-Michell (NM) linear flow
model is called NM flow representation. [9,8]

Hogner’s explicit approximation

An important approximation to the flow created by a common displacement

ship, for which one has φΣF= 0 , that steadily advances in calm water is

φ ≈ F
∫

ΣH
da nxG . (9.41)
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This approximation, proposed by Hogner in 1932 as a composite of Michell’s
famous ‘thin-ship approximation’ and the similar ‘flat-ship approximation’
proposed by Havelock, is also closely related to the NN flow representation
(9.36). Specifically, Hogner’s approximation (9.41) follows from (9.36) and
the ship-hull surface boundary condition qH = F nx if the approximation
ϕ ≈ 0 is invoked. This approximation is reasonable for common displace-
ment ships, which are streamlined slender bodies that create relatively small
flow disturbances and for which one has nx = O(B/Ls) and ϕ = O(BD/L2

s)
where Ls is the length and B and D are the beam or the draft of the ship.

Hogner’s approximation (9.41) explicitly determines the flow created by
a ship in terms of the Froude number F and nx, i.e. the speed and the length
of the ship, and the shape of the ship hull. Indeed, Hogner’s approximation
is among the most remarkable and beautiful results in ship hydrodynamics.
In spite of its great simplicity, Hogner’s explicit approximation (9.41) is
realistic and useful for several notable practical applications. [9,9]

Other flow models and theories

As is noted in section 1.2, the analysis expounded in the book is associated
with the Kelvin-Michell linear free-surface boundary condition, which is
based on the simplest, and arguably the most realistic, assumption that the
velocity ∇Φ of the flow created by a ship is significantly smaller than the
ship speed Vs . However, the nonlinear kinematic and dynamic free-surface
boundary conditions given in section 1.2 can also be linearized based on
alternative linearization assumptions. In particular, the velocity ∇Φ of the
flow created by a ship can be assumed to be a small perturbation of the flow
around the ship in the infinite or zero-gravity limits. Alternative theories
of flows around ships, notably approximate theories that do not involve
the formulation of a boundary-integral flow representation, have also been
considered in a broad literature. [9,10] and [9,11]

Although nonlinear effects are ignored in the linear analysis considered in
the book, nonlinearities have important local effects. In particular, the bow
wave of a ship that steadily advances in calm water is greatly influenced by
nonlinearities [9,12]. Moreover, the linear theory of potential flow around
a ship that advances in calm water predicts short waves that in reality are
too steep to exist due to nonlinearities [9,13] . Despite these limitations,
linear potential flow theory is mostly realistic and widely useful, and can
also be corrected to account for nonlinearities [9,14] .

177



9.9 Conclusion

In summary, four alternative linear models of potential flow around a ship
that steadily advances through regular waves, and five related boundary-
integral flow representations, are considered in this chapter. These alterna-
tive flow models are the classical Neumann-Kelvin (NK) model, the basic
rigid-waterplane (RW) flow model and two related flow models, which either
allow a 2D flow or disallow any flow at the ship waterplane. In the special
case of a ship that advances in calm water, a fifth linear flow model called
Neumann-Michell (NM) model has also been considered. A notable common
feature of all the alternative boundary-integral flow representations given in
this chapter is that they only involve weakly singular dipoles (ϕ− φ)∇ξ G
and consequently define flow potentials that are continuous at the ship-hull
surface ΣH . [8,2]

The NN flow representation (9.35) associated with the rigid-waterplane
model and the additional ‘no-flow restriction’ (9.33) at the waterplane ΣFi
stands out due to its remarkable simplicity. Specifically, the function CΓ(x)
in (9.35a) is explicitly defined as an integral over the ship’s waterline Γ or
waterplane ΣFi by the alternative expressions (9.35d), and the flow repre-
sentation (9.35) only involves the unknown flow potential ϕ at the ship-hull
surface ΣH . Thus, the flow representation (9.35) yields an integral equation
that determines the unknown flow potential at the hull surface ΣH . This flow
representation holds for the general case Ff 6= 0 as well as the particular
case F = 0 considered in chapter 8 and the particular case f = 0 considered
in section 9.8. The waterline integral that defines CΓ(x) in (9.35d) can
be decomposed into Rankine and Fourier components, which can be evalu-
ated via the relations (7.56) and the Fourier-Kochin method expounded in
chapters 10–12.

The flow representation (9.35) relies on the restriction (9.33), which
imposes that the thin sheet of water above the rigid lid that closes a free-
surface piercing hull in the rigid-waterplane flow model is a ‘dead-water’
region. This ‘no-flow’ constraint arguably precludes flow singularities along
the waterline, and intuitively ensures that the flows around a free-surface
piercing ship-hull surface ΣH and the corresponding submerged body sur-
face ΣH− ∪ ΣHi defined in the rigid-waterplane flow model are practically
equivalent. Moreover, the waterplane condition (9.33) is consistent with
the fact that the flow around ΣH does not determine a flow inside ΣH (out-
side the flow region), which can then be freely specified and in particular
can be chosen nil.

The occurrence of irregular frequencies can be avoided in the manner
explained in section 8.6 for the NN flow representation, which can also
be readily applied to the alternative boundary-integral flow representations
considered in chapter 9.
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Chapter 10

Basic Rankine-Fourier
decomposition and
Fourier-Kochin method

The boundary-integral flow representations given in the previous chapter
express the flow potential φ via distributions of the Green function G and
its gradient ∇ξG over the free surface ΣF , the hull surface ΣH , and the

waterplane ΣFi and/or the waterline Γ of the ship. The Green function G is
defined in chapter 7 in terms of Rankine singularities and a Fourier super-
position of elementary wave functions. This fundamental Rankine-Fourier
decomposition of G and ∇ξG is now applied to similarly decompose the

flow potential φ determined by the boundary-integral flow representation
(9.35) in terms of Rankine and Fourier components. The flow representa-
tion (9.35) is considered for a ship that steadily advances through regular
waves in deep water and for diffraction-radiation of regular waves by an
offshore structure in water of uniform finite depth. The two special cases of
a ship that steadily advances in calm water and wave diffraction-radiation
of regular waves by an offshore structure in deep water only involve simple
modifications of the two more general cases considered in this chapter, and
accordingly are not explicitly considered.

179



10.1 Rankine-Fourier decomposition of flow
around a ship advancing through waves

Green functions G associated with potential flows around an offshore struc-
ture in regular waves or a ship that advances through waves or in calm
water can be expressed as

4πG = −1/r +HR+GF = GR+GF where (10.1a)

r ≡
√
h2 + (ζ− z)2 with h ≡

√
(ξ − x)2 + (η − y)2 (10.1b)

and the Rankine and Fourier components HR and GF denote harmonic
functions that are defined in terms of elementary (free-space) Rankine
sources or a Fourier superposition of elementary plane waves.

For a ship that steadily advances through regular waves, now considered,
the Rankine and Fourier components GR and GF are defined by (7.6) as

GR = −1/r +1/r′ where r′ ≡
√
h2 + (ζ+ z)2 and (10.1c)

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

(f+Fα)2/k −1+ i ε sign(f+Fα)
(10.1d)

with (α, β) = k (cosγ, sinγ) and ε = +0 . (10.1e)

Expressions (10.1b-c) show that one has

GR = 0 at ΣF . (10.2)

As is explained in Chapter 7, expressions (10.1c) and (10.1d) correspond
to a Rankine-Fourier decomposition that is optimal for a ship that advances
in regular waves. However, the Rankine-Fourier decomposition (10.1c-d) is
not optimal in the special cases F = 0 or f = 0, as is also explained
in chapter 7. The Rankine-Fourier decomposition (10.1c-d) is used in the
present chapter. The modified optimal Rankine-Fourier decomposition that
is also optimal in the limits F → 0 or f → 0 is considered in chapter 12.

The Rankine-Fourier decomposition (10.1) of the Green function is now
applied to the flow representation (9.35). Thus, the flow representation[

1− CΓ
]
φ = φH + φΣF where (10.3a)

CΓ≡ −
∫

Γ

d` ν ·∇ξ Gζ , (10.3b)

φH ≡
∫

ΣH
da
[
qHG+ (φ− ϕ) n ·∇ξG

]
and (10.3c)

φΣF≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
G (10.3d)
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is considered. The unit vectors n ≡ (nx, ny, nz) and ν ≡ (νx, νy, 0) normal
to the hull surface ΣH or the waterline Γ point outside the ship.

The free-surface potential φΣF, the hull-surface potential φH and the
function CΓ in the flow representation (10.3) are expressed as

φRF + φFF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
(GR+GF ) , (10.4a)

φRH + φFH ≡
∫

ΣH
da
[
qH(GR+GF ) + (φ− ϕ) n ·∇ξ (GR+GF )

]
, (10.4b)

CRΓ + CFΓ ≡ −
∫

Γ

d` ν ·∇ξ (GRζ +GFζ) . (10.4c)

The Rankine components φRF , φ
R
H , C

R
Γ and the Fourier components φFF ,

φFH , C
F
Γ defined by (10.4) and (10.1) are successively considered below.

Rankine components

Expressions (10.4), (10.1b-c), (10.2) and (7.56) yield

φRF = 0 , (10.5a)

4πφRH =

∫
ΣH
da

[
qH
(−1

r
+

1

r′

)
+ (φ− ϕ)

(
n · r
r3
− n · r′

(r′)3

)]
where

r ≡ (ξ − x, η − y, ζ − z) and r′ ≡ (ξ − x, η − y, ζ + z) , (10.5b)

CRΓ (x) =
1

2π

∫
Γ

d`
νx(ξ − x) + νy(η − y)

(
√
h2 + z2 − z )

√
h2 + z2

. (10.5c)

Fourier components

The Fourier components φFF , φ
F
H , C

F
Γ defined by (10.4) and (10.1d-e) are

defined via distributions of the Fourier component GF in (10.1a) and its
gradient ∇ξGF . Specifically, expressions (10.4) yield

φFF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
GF , (10.6a)

φFH ≡
∫

ΣH
da
[
qHGF + (φ− ϕ) n ·∇ξGF

]
(10.6b)

and CFΓ ≡ −
∫

Γ

d` ν ·∇ξ GF ζ (10.6c)
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where GF, ∇ξGF and GF ζ are given by

GF

GFξ

GFη

GFζ

GF ζ


=

1

π

∫ π

−π
dγ

∫ ∞
0

dk



1

−iα

−iβ

k

1/k


e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

(f+Fα)2/k −1+ i ε sign(f+Fα)
(10.7)

in accordance with (10.1d).

10.2 The usual Green-function method

The usual Green-function method involves two main steps. The first
step consists in a ‘Fourier integration’ to evaluate the Fourier components
GF(ξ,x) and ∇ξGF(ξ,x) defined by the singular double Fourier integrals

(10.7). The subsequent second step is a ‘space integration’ to integrate GF

and ∇ξGF over the free surface ΣF , the hull surface ΣH , and the waterline

Γ in accordance with expressions (10.6).

The first ‘Fourier-integration’ step is now considered. In the simplest
case of diffraction-radiation of regular waves by an offshore structure in
deep water, one has F = 0 and the functions GF and ∇ξGF are functions

of the two nondimensional variables

zω ≡ f2(z + ζ) and hω ≡ f2h where h ≡
√

(x− ξ)2 + (y − η)2 .

The functions GF and ∇ξGF associated with wave diffraction-radiation by

an offshore structure in water of uniform depth D are functions of the three
nondimensional variables zω , hω and dω ≡ f2d ≡ ω2D/g. For a ship that
steadily advances in calm water, one has f = 0 and the functions GF and
∇ξGF are functions of the three nondimensional coordinates

xV ≡ (x− ξ)/F 2 , yV ≡ (y − η)/F 2 and zV ≡ (z + ζ)/F 2 .

The functions GF and ∇ξGF associated with a ship that advances through

regular waves are functions of τ ≡ Ff = Vs ω/g and the three coordinates
x − ξ, y − η, z + ζ made nondimensional with respect to the lengths g/ω2,
V 2
s /g or Vs/ω in accordance with (1.33).

These Green functions, defined by the singular double Fourier integrals
(10.7) as was already noted, have been widely studied, especially for the
simplest cases F = 0 and f = 0 in deep water. In particular, alternative
Fourier integral representations, near-field and far-field series expansions,
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one-dimensional Taylor series and even global analytical approximations
have been given for the functions GF and ∇ξGF associated with the sim-

plest cases F = 0 or f = 0. Numerical methods, notably methods based on
analytical series expansions or polynomial approximations in complemen-
tary contiguous regions and methods based on table interpolation associated
with coordinate and function transformations, for evaluating GF and ∇ξGF
have also been developed. These various analytical studies and numerical
methods are reported in a huge literature [10,1].

The second ‘space-integration’ step in the usual Green function method
consists in integrating the Fourier components GF and ∇ξGF of the Green

function G and its gradient ∇ξG over the panels (flat or curved triangles

or quadrilaterals) and segments that approximate the ship-hull surface ΣH

and its waterline Γ in common numerical implementations based on a panel
method. If a distribution of pressure and/or flux is applied at the free
surface ΣF in the vicinity of Γ, GF and ∇ξGF must also be integrated

over free-surface panels. Accurate numerical integration of GF and ∇ξGF
requires particular attention because GF and ∇ξGF involve complicated

singularities at the origin ξ − x = 0, η − y = 0, ζ + z = 0.

The usual Green-function method is not considered in this book because
both the ‘Fourier-integration’ step and the ‘space-integration’ step involve
considerable complexities, especially for the general case Ff 6= 0 and in
finite water-depth. Moreover, this classical approach requires complicated
analysis for every particular class of flows and hence lacks generality.

An inherently more general and simpler alternative, called Fourier-
Kochin (FK) method, to the usual Green-function method is considered.
The order in which the ‘Fourier-integration’ and the ‘space-integration’ steps
are performed in the usual Green-function method is reversed in the FK
method. A main recommendation of the FK method is that it is readily
applicable to a general dispersion function associated with plane waves for
a wide class of dispersive media, as is shown in the next chapter.

10.3 Fourier-Kochin representation
of Fourier components

Expressions (10.7) for GF and ∇ξGF can readily be used to express the

Fourier components φFF , φ
F
H and CFΓ defined by (10.6) as

φFF

φFH

CFΓ

 =
1

π

∫ π

−π
dγ

∫ ∞
0

dk


AF

AH

AΓ

 e k z+ i (αx+β y)

(f+Fα)2/k −1+ i ε sign(f+Fα)
(10.8)
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where AF , AH and AΓ are defined as

AF ≡
∫

ΣF
dξdη

[
qF−F pFξ − if pF

]
E , (10.9a)

AH ≡
∫

ΣH
da
[
qH + {knz − i (αnx+ βny )} (φ− ϕ)

]
e kζ E , (10.9b)

AΓ≡ i

∫
Γ

d`
α νx+ β νy

k
E (10.9c)

with E ≡ e−i (αξ+β η) and k ≡
√
α2 + β2 . (10.9d)

Expressions (10.8) and (10.9) for the Fourier components φFF , φ
F
H and CFΓ

are called Fourier-Kochin representation hereafter. The amplitude functions
AF , AH and AΓ in the Fourier-Kochin representation are called Kochin
functions or amplitude functions. These Kochin functions are functions of
the Fourier variables α and β and are denoted as A(α, β) hereafter.

10.4 Fourier-Kochin representation for
diffraction-radiation of regular waves
in water of uniform finite depth

The Fourier-Kochin (FK) representation (10.8)-(10.9) given in the previous
section for a ship that steadily advances through regular waves in deep
water is now considered for diffraction and radiation of regular waves by
a stationary body in water of uniform finite depth. The optimal Rankine-
Fourier decomposition (7.33) of the Green function for offshore structures
in finite water-depth is defined by (7.33) as

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
AζAz e i [α (x−ξ)+β (y−η) ]

1− (k/f2) tanh(kd) + 2 i ε/f
where (10.10a)

Aζ ≡ 2 cosh[k (ζ + d)]/e k d and (10.10b)

Az ≡
[
1+

k

f2

]
cosh[k (z+ d)]

2 cosh(kd)
+

[
1

2
− e−k/f2

][
1− k

f2
tanh(kd)

]
e k z .

(10.10c)

Expression (10.10a) readily yields
GF

GFξ

GFη

GFζ

=
1

π

∫ π

−π
dγ

∫ ∞
0

dk


1

− iα

− iβ

k tanh[k(ζ + d)]


AζAz e i [α (x−ξ)+β (y−η) ]

1− (k/f2) tanh(kd) + i ε

(10.11)
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where the inconsequential positive term 2/f in 2 i ε/f is omitted.

Expressions (10.6) and (10.11) show that the Fourier-Kochin represen-
tation (10.8)-(10.9) associated with a ship that steadily advances through
waves is modified as
φFF

φFH

CFΓ

 =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
cosh(kd)

e k d/2


AF

AH

AΓ

 Az e i (αx+β y)

1− (k/f2) tanh(kd) + i ε
(10.12)

where the Kochin functions AF , AH and AΓ are defined as

AF ≡
∫

ΣF
dξdη

[
qF −F pFξ − if pF

]
E , (10.13a)

AH ≡
∫

ΣH
da
[
qH + {T k nz− i (αnx+ β ny )} (φ− ϕ)

] cosh[k (ζ+ d)]

cosh(kd)
E ,

(10.13b)

AΓ≡ i tanh(kd)

∫
Γ

d`
α νx+ β νy

k
E (10.13c)

with E ≡ e− i (αξ+β η) , T ≡ tanh[k(ζ+ d)] , k ≡
√
α2 +β2 . (10.13d)

10.5 The Fourier-Kochin method

The three Kochin functions defined by (10.9) in deep water or (10.13) in
finite water-depth are determined via a space integration of the elementary
wave functions

E ≡ e− i (αξ+β η) , e k ζ E or cosh[k (ζ+ d)] E (10.14)

over the free surface ΣF and the ship-hull surface ΣH and waterline Γ. This
space (surface and line) integration of smooth ordinary functions evidently
is incomparably simpler than the space integration of the Green function
GF and its gradient ∇ξGF, which contain intricate singularities, that is

required in the usual Green function method. The Kochin functions defined
by (10.9) or (10.13) do not involve the wave frequency f or the Froude
number F, which only appear in the Fourier integrals (10.8) or (10.12).
Thus, the Fourier-Kochin (FK) method avoids the daunting analytical and
numerical complexities associated with the evaluation and subsequent space
integration of GF and ∇ξGF . However, these compelling advantages of the

FK method require the evaluation of the double Fourier integrals (10.8)
or (10.12) for amplitude functions that correspond to general distributions
of singularities, rather than for a point source in the usual Green-function
method.
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Thus, the ‘space-integration’ required to determine the Kochin function
is a trivial task in the Fourier-Kochin method, but the ‘Fourier-integration’
involves the evaluation of the singular double Fourier integrals (10.8) or
(10.12) for a general Kochin function associated with a general distribution
of the elementary wave functions (10.14). Specifically, the fundamental task
in the Fourier-Kochin method consists in evaluating the Fourier integral

φF(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
A(α, β ; z) e i (αx+β y)

∆(α, β) + i ε∆1(α, β)
where ε = +0 , (10.15)

A(α, β ; z) denotes a general amplitude (or Kochin) function, and

∆(α, β) ≡ (f+Fα)2/k −1 and ∆1(α, β) ≡ sign(f+Fα) (10.16a)

or ∆(α, β) ≡ 1− (k/f2) tanh(kd) and ∆1(α, β) ≡ 1 (10.16b)

are the dispersion functions associated with a ship that advances through
regular waves in deep water or diffraction-radiation of regular waves by an
offshore structure [10,2] .

The Fourier-Kochin representations given in this chapter for a ship that
steadily advances through regular waves in deep water and for diffraction-
radiation of regular waves by an offshore structure in finite water-depth can
readily be formulated for various similar problems—notably for a ship that
steadily advances in calm water and wave diffraction-radiation by an off-
shore structure in deep water—involving diffraction-radiation of plane dis-
persive waves. Accordingly, the Fourier integral (10.15) is considered in the
next chapter for general dispersion functions ∆(α, β) and ∆1(α, β), rather
than the specific dispersion functions (10.16), and a general amplitude func-
tion A(α, β ; z). An analytical representation of the singular double Fourier
integral (10.15) that provides an exact decomposition of φF into waves and
a non-oscillatory local disturbance is given in chapter 11.
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Chapter 11

Waves and local-effects
decomposition in a general
dispersive medium

As is explained in the previous chapter, the basic core issue of the Fourier-
Kochin method consists in evaluating the singular double Fourier integrals

φF(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
A(α, β ; z) e i (αx+β y)

∆(α, β) + i ε∆1(α, β)
or (11.1a)

φF(x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα
A(α, β ; z) e i (αx+β y)

∆(α, β) + i ε∆1(α, β)
where ε = +0 . (11.1b)

The double Fourier integrals (11.1) are considered in this chapter for gen-
eral functions ∆ and ∆1 and a general (although preferably not rapidly
oscillatory) amplitude function A .

The functions ∆ and ∆1 in (11.1) correspond to dispersion functions
associated with dispersive waves that propagate in a plane, like the waves
created by ships or offshore structures of primary interest in this book.
Other examples of waves that propagate in a plane are the waves created
by an airplane landing over a very large floating elastic offshore structure,
and the waves created by a truck or a submarine traveling over or below
an ice sheet. Indeed, offshore structures in regular waves, ships advancing
in calm water or through regular waves, and bodies moving over or below
an elastic structure create disturbances (flow, deflection) that can be ex-
pressed in terms of Fourier representations of the form (11.1), and these
disturbances consist of both waves and non-oscillatory local disturbances.
Thus, the singular double Fourier integrals (11.1) are an essential element of
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the mathematical and numerical analysis of forcing effects in a wide range of
dispersive media [11,1]. The amplitude function A in the Fourier integrals
(11.1) is associated with a general forcing.

Direct numerical evaluation of the singular double Fourier integrals
(11.1) for ε = +0 is difficult and impractical. Direct numerical evaluation
of (11.1) for 0 < ε� 1 is feasible, but impractical. Indeed, a practical and
accurate method for evaluating the singular double Fourier integrals (11.1)
requires an analytical approach, as is considered in this chapter [11,2].

The Fourier integral (11.1b) is now considered and is expressed as

φF(x) =
1

π

∫ ∞
−∞
dβ e i β y IF(β, x) where (11.2a)

IF(β, x) ≡
∫ ∞
−∞
dα

A(α, β) e iαx

∆(α, β) + i ε∆1(α, β)
. (11.2b)

The singular Fourier integral (11.2b) is analyzed for ε = +0, a general am-
plitude functionA and general real functions ∆ and ∆1 . These two functions
are dispersion functions in the book, although the analysis expounded in
the next section is general.

11.1 A basic singular Fourier integral

The Fourier variable β in expression (11.2b) is inconsequential and the basic
singular Fourier integral

IF(x) ≡
∫ ∞
−∞
dα

A(α) e iαx

∆(α) + i ε∆1(α)
with ε = +0 (11.3)

is then analyzed in this section [11,3]. As was already noted, ∆(α) and
∆1(α) are general real functions, and the amplitude function A(α) likewise
is general (but does not oscillate very fast). In the limit ε = +0 considered
in (11.3), the integrand of the integral IF is singular at the roots of the
function ∆(α). These roots are denoted as α = α∗ hereafter.

The limit ε = +0

The limit ε = +0 of the integral (11.3) is first considered. One has

1

∆ + i ε∆1
=

1

∆
− i ε∆1/∆

∆ + i ε∆1
=

1

∆
− i ε∆1

∆2 + ε2∆2
1

− ε2∆2
1/∆

∆2 + ε2∆2
1

. (11.4)

If ∆ 6= 0, the last two terms on the right side of expression (11.4) vanish in
the limit ε = 0 . Thus, the only contribution of these two terms stems from
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the roots α = α∗ of the equation ∆(α) = 0 . The function A e iαx in (11.3)
can then be taken as A∗e iα∗ x, and the functions ∆1 and ∆ can be taken
as ∆∗1 and ∆∗α(α− α∗) , in the last two terms on the right side of (11.4).

Hereafter, A∗, ∆∗1 and ∆∗α denote the values of the functions A(α),
∆1(α) or ∆α(α) at the root α = α∗ . This notation in which a superscript
(·)∗ or a subscript (·)∗ denotes a function (·) evaluated at the root α = α∗ of
the function ∆(α) = 0 is used hereafter in this chapter and in chapter 12 .

The decomposition (11.4) applied in the integral (11.3) yields

IF = IF0 −
∑
α∗

(i IF1 + IF2 )A∗e iα∗ x where IF0 ≡
∫ ∞
−∞
dα
A
∆
e iαx , (11.5a)

IF1 ≡
∫ ∞
−∞
dα

ε∆∗1/(∆∗α)2

(α− α∗)2 + (ε∆∗1/∆
∗
α)2

and (11.5b)

IF2 ≡
∫ ∞
−∞
dα

ε2 (∆∗1)2/∆∗α
(∆∗α)2(α− α∗)2 + ε2(∆∗1)2

1

α− α∗
. (11.5c)

The integrand of the integral (11.5c) is an odd function of α − α∗ and one
then has IF2 = 0 . However, the integral IF1 is not nil. The change of variable
α− α∗ = ε |∆∗1/∆∗α | t in (11.5b) yields

IF1 =
sign(∆∗1)

|∆∗α |

∫ ∞
−∞
dt

1

t2 +1
= π

sign(∆∗1)

|∆∗α |
.

Expression (11.5a) then becomes

IF = IF0 − iπ
∑
α∗

sign(∆∗1)
A∗
|∆∗α |

e iα∗ x

= IF0 − iπ
∑
α∗

sign(∆∗1∆∗α)
A∗
∆∗α

e iα∗ x (11.6a)

where IF0 =

∫ ∞
−∞
dα
A
∆
e iαx . (11.6b)

The integrand of the integral IF0 defined by (11.6b) is singular at the
roots of ∆ = 0. These singularities yield a dominant far-field contribution
according to Fourier analysis [11,4]. Therefore it is crucial to explicitly
determine this far-field contribution and to formally combine it with the
contribution of the term i ε∆1 in (11.3). Indeed, it is shown further on
that the dominant contributions of the term i ε∆1 in (11.3) and of the roots
α = α∗ in expression (11.6b) can cancel out in some regions of the physical
space, e.g. ahead of a ship that advances in calm water.
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Basic decomposition into singular and regular components

The singular integral (11.6b) is now considered. One has

A
∆
e iαx = AL e iαx +

∑
α∗

Λ e i (α−α∗)x

∆∗α (α− α∗)
A∗e iα∗ x where (11.7)

AL≡ A
∆
−
∑
α∗

Λ A∗
∆∗α (α− α∗)

and Λ ≡ e−µ
2
∗ (α−α∗)2/4 (11.8a)

is a localizing function of effective width determined by the real positive
number µ∗ . The function AL can be expressed in the form

AL =
A−A∗

∆
+
A∗
∆∗α

[
∆∗α (α− α∗)−∆

∆ (α− α∗)
+

1− Λ

α− α∗

]
+
∑

α∗∗ 6=α∗

A∗∗ e−µ2
∗∗ (α∗∗−α∗)2/4

∆∗∗α
(α∗∗ − α∗)

where the summation
∑

α∗∗ 6=α∗ is performed over all the roots of ∆ = 0
other than the root α = α∗ . Moreover, A∗∗ and ∆∗∗α denote the values of
the functions A(α) and ∆α(α) at the root α = α∗∗ . This expression for the
function AL shows that AL is finite at the root α = α∗ and given by

AL∗ =
A∗α
∆∗α
− A

∗∆∗αα
2 (∆∗α)2

+
∑

α∗∗ 6=α∗

A∗∗ e−µ2
∗∗ (α∗∗−α∗)2/4

∆∗∗α (α∗∗− α∗)
. (11.8b)

Expressions (11.6b) and (11.7) yield

IF0 = IS0 + IR0 where IR0 ≡
∫ ∞
−∞
dα AL e iαx (11.9a)

and IS0 ≡
∑
α∗

A∗
∆∗α

e iα∗ x

∫ ∞
−∞
dt
e−µ

2
∗ t

2/4 + i tx

t
. (11.9b)

The change of variable t x = θ yields∫ ∞
−∞
dt
e−µ

2
∗ t

2/4 + i tx

t
= 2 i sign(x)

∫ ∞
0

dθ
sinθ

θ
e−µ

2
∗ θ

2/(2 |x |)2

= i sign(x)

∫ ∞
0

dt
sin(2 |x|

√
t/µ∗)

t
e−t = iπ sign(x) erf

[ |x |
µ∗

]
where erf(·) is the error function. It then follows from (11.9b) that one has

IS0 =
∑
α∗

iπ sign(x) erf

[ |x |
µ∗

] A∗
∆∗α

e iα∗ x

=
∑
α∗

iπ erf

[
x

µ∗

] A∗
∆∗α

e iα∗ x . (11.10)
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Expressions (11.6), (11.9a) and (11.10) yield

IF = IR0 +
∑
α∗

iπ [ erf(x/µ∗)− sign(∆∗1∆∗α)]
A∗
∆∗α

e iα∗ x

where IF is the integral (11.3) and IR0 is defined by (11.9a) and (11.8).

11.2 Fundamental analytical representation

Thus, the singular Fourier integral (11.3) can finally be expressed as

IF(x) ≡
∫ ∞
−∞
dα

A(α) e iαx

∆(α) + i ε∆1(α)
= IW(x) + IL(x) where (11.11a)

IW(x) ≡
∑
α∗

iπ [ erf(x/µ∗)− sign(∆∗1∆∗α)]
A∗
∆∗α

e iα∗ x and (11.11b)

IL(x) ≡
∫ ∞
−∞
dαAL e iαx with AL =

A
∆
−
∑
α∗

A∗ e−µ2
∗ (α−α∗)2/4

∆∗α (α− α∗)
(11.11c)

and AL∗ =
A∗α
∆∗α
− A

∗∆∗αα
2 (∆∗α)2

+
∑

α∗∗ 6=α∗

A∗∗ e−µ2
∗∗ (α∗∗−α∗)2/4

∆∗∗α (α∗∗− α∗)
. (11.11d)

The summation
∑

α∗
in expressions (11.11b-c) is performed over all the

roots α = α∗ of the equation ∆(α) = 0 and the summation
∑
α∗∗ 6=α∗ in

(11.11d) is performed over all the roots of ∆ = 0 other than the root α = α∗ .

As was already noted, ∆∗1 ,∆
∗
α ,∆

∗
αα ,A∗ andA∗α in (11.11b-d) denote the

values of the functions ∆1(α), ∆α(α), ∆αα(α), A(α) or Aα(α) at the root
α = α∗ , and A∗∗ and ∆∗∗α similarly denote the values of the functions A(α)
and ∆α(α) at the root α = α∗∗ . Moreover, µ∗ and µ∗∗ denote the values of
the parameter µ that correspond to the roots α∗ or α∗∗ . The function AL
is finite (indeed smooth) at the root α∗ and the Fourier integral IL defined
by (11.11c) therefore is not singular, unlike the basic Fourier integral IF

defined by (11.11a). Specifically, the (finite) value AL∗ of the function AL
at the root α = α∗ is given by (11.11d).

The identity (11.11) expresses the singular integral IF as the sum of a
wave function IW and a regular (non-singular) integral IL. This identity
does not involve approximations, i.e. is exact, and holds for ε = +0 (rather
than for 0 < ε� 1) and for general functions A , ∆ and ∆1 .

The error function in expression (11.11b) and the exponential function
in expressions (11.11c-d) involve the positive real numbers µ∗ or µ∗∗ . Thus,
the components IW and IL in the decomposition (11.11a) involve µ∗ and
µ∗∗ , although the integral IF defined by (11.11a) does not involve µ∗ or µ∗∗ .
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Different choices for µ∗ and µ∗∗ therefore yield alternative decompositions
IF = IW + IL and the identity (11.11) defines a family of decompositions
IF = IW+ IL. Indeed µ can be chosen arbitrarily from a strictly mathemat-
ical standpoint. However, the next section shows that the identity (11.11)
is best suited for accurate numerical evaluation and practical applications
if µ is well chosen.

11.3 Main features of a general waves
and local-effects decomposition

Essential features of the decomposition IF = IW + IL given by (11.11) are
explained in this section. The case when the equation ∆(α) = 0 has a single
root α∗ is considered for simplicity, and µ∗ is then simply denoted as µ.

The two fundamental limits µ = 0 and µ =∞

The two interesting special choices µ = 0 and µ =∞ are studied first.

In the limit µ→∞ , expressions (11.11) yield

IF = IW∞ + IL∞ where (11.12a)

IW∞ = − iπ sign(∆∗1)A∗e iα∗ x/ |∆∗α | (11.12b)

and IL∞ = PV

∫ ∞
−∞
dα
A
∆
e iαx . (11.12c)

PV in (11.12c) represents the Cauchy principal value of the integral.

In the limit µ→ 0, expressions (11.11) become

IF = IW0 + IL0 where (11.13a)

IW0 = iπ [ sign(x)− sign(∆∗1 ∆∗α)]A∗ e iα∗ x/∆∗α (11.13b)

and IL0 =

∫ ∞
−∞
dα

[A
∆
− A

∗/∆∗α
α− α∗

]
e iαx . (11.13c)

A simple illustrative example

Important features of the general identity (11.11) and the two related special
cases (11.12-11.13) are now illustrated for a simple special case. Specifically,
the case

A = e−α
2

, ∆1 = 1 and ∆ = α− α∗ with α∗ = 1
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∞−∞
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1 − i 0

case x < 0

Figure 11.1: Integration contour in the complex plane α = αr + iαi used
to evaluate the integral I defined by (11.14a) for 0 < x (top) or x < 0
(bottom).

is considered. The derivative of the function ∆(α) is ∆α = 1. Expressions
(11.11) then become

IF =

∫ ∞
−∞
dα

e−α
2+ iαx

α−1+ i 0
= IW + IL where (11.14a)

IW ≡ iπ [erf(x/µ)−1] e i x/e and (11.14b)

IL≡
∫ ∞
−∞
dα

e−α
2− e−µ2 (α−1)2/4−1

α−1
e iαx . (11.14c)

Expressions (11.12) and (11.13) similarly become

IW∞ = − iπ
e i x

e
, IL∞ = PV

∫ ∞
−∞
dα

e−α
2+ iαx

α−1
and (11.15a)

IW0 = iπ [sign(x)−1]
e i x

e
, IL0 =

∫ ∞
−∞
dα

e−α
2− 1/e

α−1
e iαx . (11.15b)

The integral IF defined by (11.14a) can be evaluated via the classical
contour integration technique in the complex plane α = αr + iαi . Specif-
ically, the contour of integration depicted in Fig. 11.1 is considered. This
integration contour does not enclose a pole if x > 0 , but encloses the pole
α = 1 − i 0 if x < 0 . One has −α2 + iαx = −(α2

r + x2/4) along the path
α = αr + ix/2 with −∞< αr <∞ . The connections between this path of
integration and the real axis −∞<αr <∞ , αi = 0 yield a nil contribution.
One then obtains the representation

IF = IWc + ILc where IWc = iπ [sign(x)−1] e i x/e (11.16a)

and ILc ≡
∫ ∞
−∞

dα
e−(α2 +x2/4)

α−1+ ix/2
. (11.16b)
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Figure 11.2: Functions IW(x) and IL(x) defined by expressions (11.14) with
µ = 1 (second row) and expressions (11.15a) or (11.15b), which correspond
to µ = ∞ (third row) or µ = 0 (top row). The bottom row depicts the
corresponding function IF(x) = IW(x) + IL(x) , which is independent of µ.

The change of variable αr → α was performed in the integral (11.16b). The
wave components IWc in (11.16a) and IW0 in (11.15b) are identical, and one
also has ILc = IL0 as can be verified.

Thus, the decomposition IW0 + IL0 , which corresponds to the special case
µ = 0 in the decomposition IW + IL given by (11.14), is equivalent to the
classical technique of contour integration in the complex α plane, and the
decomposition IW∞ + IL∞ associated with the special case µ =∞ amounts to
taking the principal value of the singular integral IF as is noted in (11.12) .
[11,5]
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Influence of the parameter µ

The functions IW(x), IL(x) and IF(x) = IW(x) + IL(x) defined by expres-
sions (11.15a) or (11.15b), which correspond to µ = ∞ or µ = 0 as was
just noted, and expressions (11.14) with µ = 1 are depicted in Fig. 11.2.
This figure illustrates the already-noted fact that different choices of µ in
(11.14) yield different components IW and IL but has no effect on the sum
IF = IW+ IL, which is depicted in the bottom row of Fig. 11.2. This figure
therefore provides a numerical verification of the identity (11.14).

The bottom row of Fig. 11.2 also shows that the function IF decays
rapidly as x → +∞ and is negligible in the region 0 < x except in a small
near-field region in the vicinity of x = 0 . Moreover, Fig. 11.2 shows that one
has IL ≈ −IW for 0 < x in the special case µ =∞, in accordance with the
identity IF = IW+ IL. Thus, expressions (11.14c) associated with the limit
µ → ∞ and the principal-value integral IL correspond to a decomposition
IW + IL that involves numerical cancellations or additions of oscillatory
functions in half the physical space, specifically in 0 < x or in x < 0 in the
example considered in (11.14) and in Fig. 11.2. The decomposition (11.15a)
associated with the choice µ = ∞ in (11.14b-c) therefore is poorly suited
for numerical evaluation.

Expression (11.14b) yields IW ≈ 0 and hence IF ≈ IL if 2 < x/µ, as is
illustrated in Fig. 11.2. Numerical cancellations between the components
IW and IL in the identity IF = IW+IL therefore only occur within a region
of width |x| ≈ 2µ. This region is small if µ is chosen small, but is large if µ
is large.

The ‘near-field region’ |x| < 2µ, where unwanted numerical cancellations
between the components IW and IL in the identity IF = IW+IL can occur,
vanishes as µ → 0 . Indeed, the component IW0 in expressions (11.15b),
which correspond to the limit µ → 0 , is nil for 0 ≤ x. Expression (11.15b)
for the component IW0 shows that IW0 is not smooth at x = 0 , as can also
be observed in Fig. 11.2. This figure shows that the integral IL0 likewise is
not smooth at x = 0 , although the sum IF = IW0 +IL0 is smooth. The choice
µ = 0 , while much preferable to the choice µ =∞ , yields a decomposition
that is not smooth and therefore not fully satisfactory. Indeed, a positive
value of µ in (11.14) is required to obtain a decomposition IF = IW + IL

that is smooth, in accordance with the error function erf(x/µ) and as is
illustrated in Fig. 11.2 for µ = 1.

Thus, the parameter µ should not be chosen too small, to avoid exces-
sively sharp variations of the components IW and IL , or too large to avoid
numerical cancellations between the components IW and IL in large regions
of the physical space. The simple illustrative example considered in this
section suggests that the special case µ = 0 is essentially equivalent to the
classical technique of contour integration in the complex plane. This tech-
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Figure 11.3: Functions IW(x), IL(x) and IF(x) = IW(x) + IL(x) defined by
expressions (11.14a-b) and (11.20) with α∗= 1 for C = 0.25 , 0.5 and 0.75.

nique yields a discontinuity in the wave component IW because a pole is
either inside or outside an integration contour, whereas a smooth transi-
tion is allowed in the fundamental decomposition (11.11). Indeed, the error
function in expression (11.14b) is replaced by the sign function in (11.15b).

11.4 Optimal decomposition into
waves and local effects

The localizing function e−µ
2
∗ (α−α∗)2/4 in expression (11.11c) is negligible

outside the ‘dispersion strip’ defined as

− 5/µ∗ ≤ α− α∗ ≤ 5/µ∗ . (11.17)

This dispersion strip is wide if µ∗ is small, narrow if µ∗ is large. Indeed,
the integral IL defined by (11.11c) is singular in the limit µ → ∞ , which
corresponds to the principal value of a singular integral in accordance with
(11.12c).

The approximation

erf(x/µ∗) ≈ sign(x/µ∗) = sign(x) if 2 < |x|/µ∗
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shows that the function

Θ ≡ erf(x/µ∗)− sign(∆∗1 ∆∗α) (11.18a)

in expression (11.11b) for the function IW is given by

Θ ≈ sign(x) − sign(∆∗1 ∆∗α) if 2 < |x|/µ∗ . (11.18b)

This approximation shows that the influence of the parameter µ∗ on the
component IW , and hence also on the component IL , in the decomposition
IF = IW + IL is insignificant in the far-field region 2µ∗ < |x | . The extent
of the ‘near-field region’ |x| < 2µ∗ of influence of µ∗ on the components
IW and IL in the decomposition IF = IW + IL vanishes as µ∗ → 0 , but is
unbounded if µ∗ →∞ .

Thus, small/large values of µ∗ yield wide/narrow dispersion strips (in
the Fourier plane) and small/large regions (in the physical plane) where
the components IW and IL are significantly influenced by µ∗ . Moreover,
unwanted numerical cancellations between the components IW and IL occur
within a wide region |x| < 2µ∗ if µ∗ is large, as is illustrated in Fig. 11.2
for the extreme case µ∗ =∞ .

The width |x| ≈ 2µ∗ of the near-field region should then be chosen
relatively small in comparison to the wavelength 2π/α∗ that corresponds
to the root α∗ of the equation ∆ = 0 . In particular, the width of the
near-field region is equal to 1/6 of the wavelength 2π/|α∗ | if µ∗ is chosen
as µ∗ = C/|α∗ | with C = π/6 ≈ 1/2 . An optimal waves and local-effects
decomposition is then obtained if the parameter µ∗ in (11.11b-d) is chosen as

µ∗ = C/|α∗ | with C ≈ 1/2 . (11.19)

This choice yields a smooth decomposition of the singular integral IF into a
wave component IW and a component IL that represents a non-oscillatory
local component, as is illustrated in Fig. 11.2 . Smaller values of C yield
sharper variations of the wave and local components IW and IL within
narrower near-field regions. In particular, these two components are not
smooth, even though the sum IW+ IL is smooth, in the limit C = 0. [11,6]

The functions IW(x), IL(x) and IF(x) = IW(x)+IL(x) defined by (11.14)
and (11.19), where one has α∗= 1 and µ∗ = µ = C , are depicted in Fig. 11.3
for C = 0.25 , 0.5 and 0.75. This figure shows that the decomposition (11.11)
is not overly sensitive to the choice of the parameter µ. Fig. 11.3 also shows
that satisfactory decompositions are obtained for values of C ≈ 1/2 in
expression (11.19). This value of C is considered to be nearly optimal.

Special case and general expression for µ∗

Expression (11.19) yields µ∗ = ∞ if α∗ = 0 . This special case, in which
the function ∆(α) in (11.3) has a root α∗ = 0 , occurs for instance for the
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dispersion function associated with a ship that advances through regular
waves considered in chapter 5. An unbounded value of µ∗ in the special
case α∗ = 0 is avoided if expression (11.19) is modified as

µ∗ = C/α∗m where C ≈ 1/2 , α∗m ≡
√
α2
∗ + α2

s (11.20)

and αs denotes a significant value of α associated with the function ∆(α),
as is illustrated in the next section for the dispersion function relevant to a
ship that advances through regular waves.

11.5 Open dispersion curves expressed
in Cartesian form

The fundamental general analytical representation (11.11) is now applied
to the singular double Fourier integrals (11.2) and (11.1b) associated with
dispersion curves ∆(α, β) = 0 expressed in the Cartesian form α = α∗(β)
with −∞ < β < +∞ .

Expressions (11.1b), (11.2) and (11.11) readily yield

φF(x) ≡ 1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

A(α, β) e i (αx+β y)

∆(α, β) + i ε∆1(α, β)
(11.21a)

= φW(x) + φL(x) (11.21b)

where φW(x) and φL(x) respectively represent waves and a nonoscillatory
local disturbance.

The wave component φW(x) in the decomposition (11.21b) is given by

φW ≡
∑
α∗

i

∫ ∞
−∞
dβ Θ

A∗
∆∗α

e i (α∗x+β y) (11.22a)

where Θ = erf(α∗m x/C )− sign(∆∗1 ∆∗α) (11.22b)

with α∗m =
√
α2
∗ + α2

s and C ≈ 1/2 (11.22c)

in accordance with (11.20), and erf is the error function. The summation∑
α∗

is performed over all the roots α = α∗(β) of the dispersion relation
∆(α, β) = 0 and thus accounts for the contribution of all the dispersion
curves defined by the dispersion relation. The functions A(α, β) , Aα(α, β) ,
∆α(α, β) , ∆1(α, β) evaluated at the (dispersion) curve α = α∗(β) are de-
noted as{

A∗≡ A∗(β) ≡A(α∗ , β)
A∗α ≡ A∗α(β) ≡Aα(α∗ , β)

} {
∆∗α ≡ ∆∗α(β) ≡∆α(α∗ , β)
∆∗1 ≡ ∆∗1(β) ≡∆1(α∗ , β)

}
in (11.22a-b).
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The local component φL(x) in the decomposition (11.21b) is given by
the double Fourier integral

φL(x) ≡ 1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα AL(α, β) e i (αx+β y) (11.23a)

where AL≡ A
∆
−
∑
α∗

A∗ e−C2(α−α∗ )2/(2α∗m )2

∆∗α (α− α∗)
. (11.23b)

The function AL(α, β) is finite at the dispersion curves α = α∗(β) where
the functions AL(α∗ , β) ≡ AL∗ (β) ≡ AL∗ are defined by (11.8b) as

AL∗ =
A∗α
∆∗α
− A

∗∆∗αα
2 (∆∗α)2

+
∑

α∗∗ 6=α∗

A∗∗ e−C2 (α∗∗−α∗)2/(2α∗∗m )2

∆∗∗α (α∗∗− α∗)
(11.23c)

where the summation
∑
α∗∗ 6=α∗ is performed over all the roots of ∆ = 0

other than the root α = α∗ .

An optimal decomposition—in which the component φW given by the
single Fourier integrals (11.22) represents the waves defined by the singular
double integral in (11.21) and the double integral (11.23) represents a non-
oscillatory local disturbance, and the components φW and φL are smooth—
is obtained if C is chosen as C ≈ 1/2 in (11.22b) and (11.23b-c). The
wavenumber αs in (11.22c) can be taken as αs = 0 for dispersion curves
∆(α, β) that do not cross the axis α = 0, but should be taken as a significant
small wavenumber αs for a dispersion curve that crosses the axis α = 0 .
E.g., for a ship that steadily advances through regular waves at 1/4 < τ ,
the dispersion curve IO+ located in the region −k−i ≤ α <∞ intersects the
axis α = 0 , and αs = k−i is an obvious choice.

Expressions (11.21-11.23) associated with dispersion curves expressed in
the Cartesian form α = α∗(β) can readily be applied to dispersion curves
expressed in the Cartesian form β = β∗(α) via the substitution α←→ β .

11.6 Closed dispersion curve expressed
in polar form

Application of the fundamental decomposition (11.11) to the general inte-
gral (11.1a) associated with the polar representation (k,γ) is not as straight-
forward because the wavenumber k varies within the range 0 ≤ k < ∞ in
(11.1a), whereas the range of integration is −∞ < α < ∞ in (11.1b) and
(11.2). This application is now considered. Specifically, this section con-
siders the case of a closed dispersion curve, defined as k = k∗(γ), that
surrounds the origin k = 0 of the Fourier plane, such as the inner dispersion
curve I depicted in Fig.5.2 related to flows around ships steadily advancing
in regular waves at τ < 1/4 .
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Analysis

One has

φF = φF+ + φF− where (11.24a)

φF+ =
1

π

∫ π

0

dγ

∫ ∞
0

dk
A(k,γ) e i k (x cosγ+y sinγ)

∆(k,γ) + i ε∆1(k,γ)
(11.24b)

and φF− =
1

π

∫ 0

−π
dγ′
∫ ∞

0

dk′
A(k′,γ′) e i k′(x cosγ′+y sinγ′)

∆(k′,γ′) + i ε∆1(k′,γ′)
.

The changes of variables γ′ = γ − π and k′ = −k in the expression for φF−
yield

φF− =
1

π

∫ π

0

dγ

∫ 0

−∞
dk
A(−k,γ − π) e i k (x cosγ+y sinγ)

∆(−k,γ − π) + i ε∆1(−k,γ − π)
. (11.24c)

Expressions (11.24) yield

φF(x) =
1

π

∫ π

0

dγ IF(γ,x) where (11.25a)

IF(γ,x) ≡
∫ ∞
−∞
dk
Â(k,γ) e i k (x cosγ+y sinγ)

∆̂(k,γ) + i ε ∆̂1(k,γ)
(11.25b)

and the functions Â , ∆̂ and ∆̂1 are defined as

Â(k ,γ) =

{
A(k,γ) if 0 ≤ k
A(−k,γ−π) if k < 0

(11.26a)

∆̂(k,γ) =

{
∆(k,γ) if 0 ≤ k
∆(−k,γ−π) if k < 0

(11.26b)

∆̂1(k,γ) =

{
∆1(k,γ) if 0 ≤ k
∆1(−k,γ−π) if k < 0

(11.26c)

Expression (11.26b) yields

∆̂k(k,γ) =

{
∆k(k,γ) if 0 ≤ k
−∆k(−k,γ−π) if k < 0

(11.26d)

and the roots of the dispersion relation ∆̂(k,γ) = 0 are k = k∗(γ) and
k = −k∗(γ−π) where 0 ≤ γ ≤ π and 0 < k∗ .

The integral IF defined by (11.25b) is of the form (11.3) and (11.11a)
with the substitutions

x −→ x cosγ + y sinγ , α −→ k and (A ,∆ ,∆1) −→ (Â , ∆̂ , ∆̂1) .
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Moreover, expression (11.19) becomes

µ∗(γ) = C/k∗(γ) with C ≈ 1/2 . (11.27)

Expressions (11.25-11.27) and (11.11) then yield

φF(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
A(k,γ) e i k (x cosγ+y sinγ)

∆(k,γ) + i ε∆1(k,γ)
(11.28a)

= φW(x) + φL(x) . (11.28b)

The wave component φW(x) in (11.28b) is given by

φW = i

∫ π

0

dγ

[
Θ+ A(k+

∗ , γ)

∆k(k+
∗ , γ)

e i k+
∗ (x cosγ+y sinγ)

− Θ−
A(k−∗ , γ−π)

∆k(k−∗ , γ−π)
e− i k−∗ (x cosγ+y sinγ)

]
(11.29)

where k+
∗ ≡ k∗(γ) , k−∗ ≡ k∗(γ−π) ,

Θ+≡ erf
[
k+
∗ (x cosγ + y sinγ)/C

]
− sign[∆1(k+

∗ , γ) ∆k (k+
∗ , γ)] ,

Θ−≡ erf
[
k−∗ (x cosγ + y sinγ)/C

]
+ sign[∆1(k−∗ , γ−π) ∆k (k−∗ , γ−π)] .

The change of variable γ − π → γ in the second term in (11.29) finally
yields

φW(x) = i

∫ π

−π
dγ Θ

A(k∗ , γ)

∆k(k∗ , γ)
e i k∗ (x cosγ+y sinγ) (11.30a)

where k∗ = k∗(γ) and (11.30b)

Θ ≡ erf[k∗ (x cosγ + y sinγ)/C ]− sign[∆1(k∗ , γ) ∆k (k∗ , γ)] . (11.30c)

The local-effect component φL(x) in (11.28b) is given by

φL =
1

π

∫ π

0

dγ

∫ ∞
−∞
dk AL(k,γ) e i k (x cosγ+y sinγ) where

AL =
Â(k,γ)

∆̂(k,γ)
− A(k+

∗ , γ) e−C
2(k/k+

∗ −1)2/4

(k − k+
∗ ) ∆k (k+

∗ , γ)

+
A(k−∗ , γ − π) e−C

2(k/k−∗ +1)2/4

(k + k−∗ ) ∆k (k−∗ , γ−π)
. (11.31)

The changes of variables γ−π → γ and k → −k in the lower half 0 ≤ γ ≤ π ,
−∞ < k ≤ 0 of the region of integration in the integral (11.31) finally yield
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φL(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk AL(k,γ) e i k (x cosγ+y sinγ) (11.32a)

where AL =
A(k,γ)

∆(k,γ)
− A(k+

∗ , γ) e−C
2(k/k+

∗ −1)2/4

(k − k+
∗ ) ∆k (k+

∗ , γ)

+
A(k−∗ , γ − π) e−C

2(k/k−∗ +1)2/4

(k + k−∗ ) ∆k (k−∗ , γ − π)
(11.32b)

with k+
∗ ≡ k∗(γ) and k−∗ ≡ k∗(γ−π) . (11.32c)

Summary

In summary, the general singular double Fourier integral defined by (11.28)
is expressed as the sum of a wave component φW and a local-effect compo-
nent φL. Thus, one has

φF(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
A(k,γ) e i k (x cosγ+y sinγ)

∆(k,γ) + i ε∆1(k,γ)
(11.33a)

= φW(x) + φL(x) . (11.33b)

The wave component φW in (11.33b) is expressed by (11.30) as

φW(x) = i

∫ π

−π
dγ Θ

A(k∗ , γ)

∆k(k∗ , γ)
e i k∗ (x cosγ+y sinγ) (11.34a)

where k∗ = k∗(γ) and (11.34b)

Θ ≡ erf [k∗ (x cosγ + y sinγ)/C ]− sign[∆1(k∗ , γ) ∆k (k∗ , γ)] . (11.34c)

The local-effect component φL in (11.33b) is expressed by (11.32) as

φL(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dkAL(k,γ) e i k (x cosγ+y sinγ) (11.35a)

where AL =
A(k,γ)

∆(k,γ)
− A(k+

∗ γ) e−C
2(k/k+

∗ −1)2/4

(k − k+
∗ ) ∆k (k+

∗ , γ)

+
A(k−∗ , γ−π) e−C

2(k/k−∗ +1)2/4

(k + k−∗ ) ∆k (k−∗ , γ−π)
(11.35b)

with k+
∗ ≡ k∗(γ) and k−∗ ≡ k∗(γ−π) . (11.35c)

The function AL(k,γ) is finite at the dispersion curve k = k∗(γ) where the
function AL(k∗ , γ) ≡ AL∗ (γ) ≡ AL∗ is given by

AL∗ =
Ak (k+

∗ , γ)

∆k (k+
∗ , γ)

− A(k+
∗ , γ) ∆kk(k+

∗ , γ)

2 ∆2
k (k+
∗ , γ)

+
A(k−∗ , γ−π) e−C

2(k+
∗ /k

−
∗ +1)2/4

(k+
∗ + k−∗ ) ∆k (k−∗ , γ−π)

(11.35d)
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Expressions (11.35) with C ≈ 1/2 yield a smooth decomposition into waves
and local effects.

11.7 Conclusion

Expressions (11.21-11.23) can be applied to a general amplitude function
A(α, β), i.e. a general applied forcing, and general dispersion functions
∆(α, β) and ∆1(α, β) associated with dispersion curves ∆ = 0 expressed
in the Cartesian form α = α∗(β) with −∞ < β < +∞ . Expressions (11.33-
11.35) similarly hold for a general amplitude function A(k,γ) and general
dispersion functions ∆(k,γ) and ∆1(k,γ) associated with a single closed
dispersion curve ∆ = 0 that contains the origin k = 0 of the Fourier plane
and is expressed in the polar form k = k∗(γ) with −π ≤ γ ≤ π .

The fundamental relations (11.21-11.23) and (11.33-11.35) express the
singular double Fourier integrals (11.21a) and (11.33a) in terms of wave
components φW(x) and non-oscillatory local disturbances φL(x). These de-
compositions are exact and nearly optimal. The wave components φW in
the decompositions (11.21b) and (11.33b) are expressed as single Fourier
integrals along the dispersion curves defined by the dispersion relations
∆(α, β) = 0 or ∆(k,γ) = 0, and the local-effects components φL are de-
fined by double Fourier integrals with integrands that are everywhere finite,
notably along the dispersion curves ∆ = 0 and at the origin k = 0 of the
Fourier plane, and vanish as k →∞ . Thus, the Fourier integrals that define
the wave component φW and the local component φL in the decompositions
φF = φW + φL are suited for accurate numerical evaluation.
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Chapter 12

Waves and local flow
created by a general
singularity distribution

The fundamental analytical representations given in the previous chapter for
a general dispersive medium and a general amplitude (Kochin) function are
now applied to the specific dispersion functions ∆ and ∆1 that are associated
with five classes of flows in ship and offshore hydrodynamics: diffraction-
radiation of regular waves by offshore structures in water of uniform finite
depth or in deep water, and flow around a ship that steadily advances in
calm water or through regular waves in the regimes 0 ≤ τ < 1/4 or 0.3 ≤ τ .

The Fourier component φF, called Fourier potential in this chapter, in
the Rankine-Fourier decomposition φ = φR +φF is considered for a general
Kochin function; e.g. the Kochin functions AF , AH and AΓ in (10.12) or
the Kochin function associated with the Fourier-Kochin representation of
the flow created by a distribution of singularities such as a distribution of
sources over a flat triangle.

Thus, exact analytical representations of the Fourier potential φF as the
sum of a wave component φW and a local-flow component φL are given in this
chapter for five classes of flows in ship and offshore hydrodynamics. These
flow representations provide a simple basis suited for accurate evaluation of
the Fourier potential φF that corresponds to the Kochin function associated
with a general distribution of singularities [12,1].
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12.1 Diffraction-radiation of regular waves by
offshore structures in finite water depth

The Fourier-Kochin representation (10.12) associated with diffraction-
radiation of regular waves by an offshore structure in finite water-depth
shows that the dispersion functions ∆ and ∆1 in (11.33a) are given by

∆(k) = 1− (k/f2) tanh(kd) and ∆1 = 1 . (12.1a)

The dispersion relation ∆ = 0 has a single root k = k∗ , which is determined
by the equation

k∗ tanh(k∗d) = f2 . (12.1b)

Thus, one has a single dispersion curve: the circle k = k∗ centered at the
origin k = 0 of the Fourier plane.

Expression (10.12) shows that the Fourier-Kochin representation of the
Fourier potential φF associated with the optimal Rankine-Fourier decom-
position defined by (7.32) and (7.33) and a general Kochin function A(k,γ)
can be expressed as

φF(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk
cosh(kd)

ekd/2

Az(k, z) e i (αx+β y)

1− (k/f2) tanh(kd) + i ε
A(k,γ) (12.2a)

where the function Az(k, z) is defined by expression (7.33c) as

Az ≡
[
1+

k

f2

]
cosh[k(z+ d)]

2 cosh(kd)
+

[
1

2
− e−k/f2

][
1− k

f2
tanh(kd)

]
ekz .

(12.2b)
The function Az also involves the water-depth d and the wave frequency
f, but these two parameters are not explicitly noted for shortness. The
Kochin function A(k,γ) in (12.2a) can be associated with any distribution of
singularities. In particular, A can be taken as the Kochin function associated
with a distribution of sources or dipoles over a panel, or as the Kochin
functions AF , AH or AΓ in (10.12).

The Fourier potential φF defined by (12.2) is of the form (11.33a) with
the function A(k,γ) defined as

A(k,γ) ≡ cosh(kd)

ekd/2
Az(k, z)A(k,γ) . (12.3)

Expressions (12.1a) show that one has

−f2∆k =
sinh(kd) + kd/cosh(kd)

cosh(kd)
and − sign(∆1 ∆k) = 1 . (12.4)
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Fourier potential associated with a general Kochin function

Expressions (11.33-11.35) applied to (12.2a) yield

φF(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk
cosh(kd)

ekd/2

Az(k, z) e i k (x cosγ+y sinγ)

1− (k/f2) tanh(kd) + i ε
A(k,γ) (12.5a)

=φW(x) + φL(x) . (12.5b)

The wave component φW in (12.5b) is given by

i φW(x)

f2
≡ Â∗Az∗

∫ π

−π
dγ Θ e i k∗ (x cosγ+y sinγ)A∗(γ) (12.6a)

where Θ ≡ 1+ erf [k∗ (x cosγ + y sinγ)/C ] , (12.6b)

A∗(γ) ≡ A(k = k∗ , γ) and k∗ is the root of the dispersion relation (12.1b).
Moreover, Az∗ is defined by (12.2b) as

Az∗ ≡ Az(k∗ , z) =
1 + tanh(k∗d)

2 tanh(k∗d)

cosh[k∗ (z+ d)]

cosh(k∗d)
(12.6c)

and Â∗ ≡ Â(k∗d) ≡ 2 cosh2(k∗d)/ek∗d

sinh(k∗d) + k∗d/cosh(k∗d)
. (12.6d)

The local-flow component φL in (12.5b) is given by

φL(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(k,γ) where (12.7a)

AL(k,γ) ≡ cosh(kd)

e kd/2

Az(k, z) A(k,γ)

1− (k/f2) tanh(kd)

− Â∗Az∗

[
e−C

2(1−k/k∗)2/4

k∗/f2 − k/f2
A∗(γ) +

e−C
2(1+k/k∗)

2/4

k∗/f2 + k/f2
A∗(γ−π)

]
. (12.7b)

In the common case of an amplitude function A(k,γ) that satisfies the
relation A(k,γ−π) = A(k,γ) where an overline means complex conjugate,
the change of variable γ → γ−π in the portion −π ≤ γ ≤ 0 of the range of
integration in the Fourier integral (12.7a) yields

φL(x) ≡ 2

π
Re

∫ π

0

dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(k,γ) (12.7c)

where AL(k,γ) is given by (12.7b).

A nearly optimal waves and local-flow decomposition φW+φL is obtained
if C ≈ 1/2 . The function A(k,γ) in (12.5a), (12.6a) and (12.7b) denotes a
general amplitude function, notably the Kochin function associated with
any distribution of singularities. The general flow representation (12.5-
12.7) is associated with the optimal Rankine-Fourier decomposition defined
by (7.32) and (7.33).
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Deep-water limit

In the deep-water limit d → ∞ , the dispersion function (12.1a) and the
radius k∗ of the dispersion circle defined by the root of the dispersion relation
(12.1b) become

∆ = 1− k/f2 and k∗ = f2 .

This expression for k∗ and expressions (12.6d), (12.6c) and (12.2b) yield

Â∗ = 1 , Az∗ = ef
2z and Az =

[
1+ e−k/f

2

(k/f2−1)
]
ekz .

Expressions (12.5) then become

φF(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk
1− e−k/f2

(1− k/f2)

1− k/f2 + i ε
ekz+i k (x cosγ+y sinγ)A(k,γ)

= φW(x) + φL(x) . (12.8)

The wave component φW in (12.8) is determined by (12.6) as

i φW(x)

f2
≡ ef

2z

∫ π

−π
dγ Θ e if2 (x cosγ+y sinγ)A∗(γ) (12.9a)

where Θ ≡ 1+ erf[f2(x cosγ + y sinγ)/C ] (12.9b)

and A∗(γ) ≡ A(k = f2, γ) . Finally, the local-flow component φL in (12.8)
is determined by (12.7) as

φL(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(k,γ) where (12.10a)

AL(k,γ) ≡ 1− e−k/f2

(1− k/f2)

1− k/f2
ek zA(k,γ)

− ef2z

[
e−C

2(1−k/f2 )2/4

1− k/f2
A∗(γ) +

e−C
2(1+k/f2 )2/4

1 + k/f2
A∗(γ−π)

]
. (12.10b)

If the amplitude function A(k,γ) satisfies the relation A(k,γ−π) = A(k,γ),
(12.10a) becomes

φL(x) ≡ 2

π
Re

∫ π

0

dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ) AL(k,γ) (12.10c)

where AL(k,γ) is given by (12.10b). Expressions (12.8-12.10), obtained in
the foregoing as the deep-water limit of (12.5-12.7), evidently can also be
obtained from (11.33-11.35).
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12.2 Ship steadily advancing in calm water

The optimal Rankine-Fourier decomposition (7.16) of the Green function
associated with a ship that steadily advances in calm water is used in this
section. The polar representation (7.16b) of the Fourier component GF is
expressed in the equivalent Cartesian form

GF =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα Â(α, β)

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

∆(α, β) + i ε∆1(α, β)
(12.11)

where the function Â(α, β) and the dispersion functions ∆(α, β) and
∆1(α, β) are given by

Â(α, β) ≡ 1+ e−F
2k (F 2α2/k −1) , (12.12a)

∆(α, β) ≡ F 2α2− k and ∆1(α, β) ≡ sign(α) . (12.12b)

These expressions show that the value Â∗ of the function Â at a dispersion
curve ∆ = 0 is

Â∗ = 1 . (12.12c)

The Fourier-Kochin representation of the Fourier component φF (x) that
corresponds to the Fourier component (12.11) associated with an optimal
Rankine-Fourier decomposition GR+GF of G is then defined as

φF (x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

Â(α, β) e kz+ i (αx+β y)

F 2α2−k + i ε sign(α)
A(α, β) (12.13)

where A(α, β) is a Kochin function associated with a general distribution

of singularities and Â(α, β) is defined by (12.12a).

The dispersion relation ∆(α, β) = 0 defines two dispersion curves, which
are symmetric about the axis α = 0 and are expressed in the Cartesian form

α = ±α∗(β) where F 2α∗ ≡
√

1/2 +
√

1/4 + (F 2β)2 (12.14)

and −∞ < β <∞ . These dispersion curves are depicted in Fig.4.1.

At the dispersion curves α = ±α∗ , one has

∆∗α =
2(F 2α)2−1

F 2α
, sign(∆∗α) = sign(α) and sign(∆∗1 ∆∗α) = 1 (12.15)

where (12.12b) was used.

The wave component φW that corresponds to the Fourier potential φF

defined by (12.13) is determined from expressions (11.22), (12.12a), (12.12c)
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and (12.15) as

i φW(x) =

∫ ∞
−∞
dβ [1− erf(α∗x/C )]

eF
2α2
∗ z+i (α∗x+β y)

2F 2α∗ − 1/(F 2α∗)
A(α∗, β )

−
∫ ∞
−∞
dβ [1− erf(α∗x/C )]

eF
2α2
∗ z− i (α∗x+β y)

2F 2α∗ − 1/(F 2α∗)
A(−α∗ ,−β )

where the change of variable β → −β was made in the last integral. The
change of variable F 2β = q

√
1+ q2 yields F 2α∗=

√
1+ q2 and expressions

(12.17), given further on.

The local-flow component φL that corresponds to the Fourier potential
φF and the wave component φW is determined from expression (11.23) as

φL(x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα e i (αx+β y)AL(α, β) where

AL(α, β) =
Â(α, β) ekz

F 2α2 − k A(α, β)

− eF
2α2
∗ z−C

2(1−α/α∗)2/4A(α∗, β)

(α− α∗)[ 2F 2α∗−1/(F 2α∗)]
+
eF

2α2
∗ z−C

2(1+α/α∗)
2/4A(−α∗, β)

(α+ α∗)[ 2F 2α∗−1/(F 2α∗)]
.

Expressions (12.12a) and (12.14) for the functions Â(α, β) and α∗(β) yield
expressions (12.18), given further on.

Fourier potential associated with a general Kochin function

In summary, one has

φF(x) ≡ 1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

1+ e−F
2k (F 2α2/k −1)

F 2α2−k + i ε sign(α)
e kz+ i (αx+β y)A(α, β)

= φW(x) + φL(x) . (12.16)

The wave potential φW in (12.16) is given by

i F 2φW(x) =

∫ ∞
−∞
dq
[
1− erf

(√
1 + q2 (x/F 2)/C

)]
e (1+q2)z/F 2

[
e i
√

1+q2 (x+q y)/F 2

A+(q)− e− i
√

1+q2 (x+q y)/F 2

A−(q)
]

with A±(q) ≡ A
(
α = ±

√
1+ q2/F 2, β = ± q

√
1+ q2/F 2

)
. (12.17)

210



The local-flow potential φL in (12.16) is given by

φL(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(α, β) where (12.18a)

AL(α, β) ≡ 1+ e−F
2k (F 2α2/k −1)

F 2α2/k − 1
ekzA(α, β)

+
eF

2α2
∗ z−C

2(1−α/α∗)2/4A(α∗, β)

(1− α/α∗)
√

1+ 4(F 2β)2/(F 2k)
+
eF

2α2
∗ z−C

2(1+α/α∗)
2/4A(−α∗, β)

(1+ α/α∗)
√

1+ 4(F 2β)2/(F 2k)

with F 2α∗=
√

1/2 +
√

1/4 + (F 2β)2 , (α, β) = k (cosγ, sinγ) . (12.18b)

In the common case of an amplitude function A(α, β) that satisfies the
relation A(−α,−β) = A(α, β) where an overline means complex conjugate,
(12.17) can be simplified as

F 2φW(x) = 2 Im

∫ ∞
−∞
dq Θ e (1+q2)z/F 2 + i

√
1+q2 (x+q y)/F 2

A(q) (12.19a)

where Θ ≡ 1− erf
[√

1 + q2 (x/F 2)/C
]

and (12.19b)

A(q) ≡ A
(
α =

√
1+ q2/F 2, β = q

√
1+ q2/F 2

)
. (12.19c)

Similarly, the change of variable γ → γ − π in the portion −π ≤ γ ≤ 0 of
the range of integration in the integral (12.18a) yields

φL(x) =
2

π
Re

∫ π

0

dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(α, β) (12.19d)

where AL(α, β) is given by (12.18b).

12.3 Ship advancing through regular waves
in the regime 0.3 ≤ τ

Expressions (7.6) for the Green function associated with a ship that steadily
advances through regular waves are used in this section. Section 7.6 shows
that these expressions yield an optimal Rankine-Fourier decomposition. The
polar representation (7.6c) of the Fourier component GF in the Rankine-
Fourier decomposition (7.6a) is expressed in the equivalent Cartesian form

GF =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k (z+ζ )+ i [α (x−ξ )+β (y−η) ]

∆(α, β) + i ε∆1(α, β)
(12.20)

where k ≡
√
α2 + β2 and the dispersion functions ∆ and ∆1 are given by

∆(α, β) ≡ (f+Fα)2− k and ∆1(α, β) ≡ sign(f+Fα) . (12.21)
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As in the case of a ship that steadily advances in calm water considered
in the previous section, the dispersion relation ∆ = 0 defines two open
dispersion curves if 1/4 < τ . These two dispersion curves, identified as O−

and IO+ in chapter 5, are located in the regions

−∞ < α ≤ −k−o and − k−i ≤ α <∞ (12.22)

where the basic wavenumbers k−o and k−i are given by (5.8). A constant-β
line intersects the dispersion curve O− at a single point, and this dispersion
curve can be represented in the Cartesian form α = α−∗ (β) for every value of
τ in the range 1/4 < τ . However, a constant-β line intersects the dispersion
curve IO+ at three points if 1/4 < τ ≤

√
2/27 ≈ 0.272 or at a single point

if
√

2/27 < τ , as is illustrated in Fig.5.6. This dispersion curve can only
be conveniently represented in the Cartesian form α = α+

∗ (β) if τ `≤ τ with
τ `≈ 0.3 , as is shown in chapter 5.

The regime 0.3 ≤ τ is considered in this section, and the two dispersion
curves O− and IO+ are represented in the Cartesian form

α = α−∗ (β) or α = α+
∗ (β) where −∞ < β <∞ (12.23a)

and the functions α±∗ (β) are defined by (5.30) and (5.31). These dispersion
curves are depicted in Fig.5.4 and Fig.5.5. The wavenumbers k±∗ (β) that
correspond to the roots α±∗ (β) are given by

k±∗ (β) =

√
[α±∗ (β)]2 + β2 . (12.23b)

Expressions (12.21) yield

∆α(α, β) = 2(τ +F 2α)− α/k and ∆1(α, β) = sign(τ +F 2α) . (12.23c)

At the dispersion curves α = α±∗ (β) , one has

F 2α+
∗ ≥ F 2α+

∗ (β = 0) ≡ −
(√

1/4 + τ − 1/2
)2

and

F 2α−∗ ≤ F 2α−∗ (β = 0) ≡ −
(√

1/4 + τ + 1/2
)2

where α±∗ (β = 0) are the roots of the dispersion relation (f+Fα)2 +α = 0
for β = 0 . One has

τ + F 2α+
∗ ≥

√
1/4 + τ − 1/2 > 0 ,

τ + F 2α−∗ ≤ −(
√

1/4 + τ + 1/2) < 0 and

∆α(α−∗ , β) ≡ 2 (τ + F 2α−∗ )− α−∗ /k−∗ ≤ −
√

1 + 4τ < 0

where the relation α−∗ /k
−
∗ ≥ −1 was used. Moreover, the dispersion relation

(f+Fα+
∗ )2− k+

∗ = 0 yields

∆α(α+
∗ , β) = 2 (τ + F 2α+

∗ )− F 2α+
∗ /(τ + F 2α+

∗ )2 .
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The function N(α̂) ≡ 2(τ + α̂)3 − α̂ is considered for

−(
√

1/4 + τ − 1/2)2 ≤ α̂ ≡ F 2α+
∗ .

It can be verified that one has

N(α̂) ≥ N(α̂0) ≡ τ −
√

2/27 > 0 where α̂0 ≡ 1/
√

6− τ ,

N ′(α̂) = 0 and N ′′(α̂) > 0. One then has ∆α(α+
∗ , β) > 0 , and

±∆α(α±∗ , β) > 0 and ±∆1(α±∗ , β) > 0 . (12.23d)

Fourier potential associated with a general Kochin function

Expression (12.20) for the Fourier component GF in the Rankine-Fourier
decomposition of the Green function appropriate for a ship that advances
through regular waves shows that the Fourier potential φF that corresponds
to a Kochin function A(α, β) associated with a given singularity distribution
can be expressed as

φF(x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

e k z+ i (αx+β y) A(α, β)

(f+Fα)2− k + i ε sign(f+Fα)
. (12.24a)

This expression for the Fourier potential φF is of the form (11.21) and the
wave and local-flow potentials φW and φL in the decomposition

φF(x) = φW(x) + φL(x) (12.24b)

can then be obtained from expressions (11.22) and (11.23).

Specifically, the wave potential φW in expression (12.24b) is determined
by (11.22) and (12.23c-d) as

i φW(x) =

∫ ∞
−∞
dβ

[
1− erf(α+

m x/C )

2 (τ +F 2α+
∗ )− α+

∗ /k
+
∗
ek

+
∗ z+ i (α+

∗ x+β y)A(α+
∗ , β)

+
1+ erf(α−∗ x/C )

2 (τ +F 2α−∗ )− α−∗ /k−∗
ek
−
∗ z + i (α−∗ x+β y)A(α−∗ , β)

]
where α+

m(β) ≡
√

(α+
∗ )2 + (k−i )2 with k−i = f2/(

√
1/4+τ +1/2)2 . (12.25)

Moreover, α±∗ (β) and k±∗ (β) are given by (12.23a-b). The modified root
α+
m is used for the dispersion curve IO+ because this curve crosses the axis
α = 0 in accordance with (12.22) and as is illustrated in Fig.5.6. The small
wavenumber αs in expression (11.22c) is taken as the smallest wavenumber
k−i associated with the dispersion curve IO+ in (12.25).
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The local-flow potential φL in expression (12.24b) is determined by
(11.23) and (12.23c-d) as

φL(x) ≡ 1

π

∫ π

−π
dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)AL(α, β) where (12.26a)

AL(α, β) ≡ e k z A(α, β)

(f+Fα)2/k −1
− e k

+
∗ z−C

2 (α−α+
∗ )2/(2α+

m )2

A(α+
∗ , β)

[ 2 (τ +F 2α+
∗ )− α+

∗ /k
+
∗ ](α− α+

∗ )/k

− e k
−
∗ z−C

2 (1−α/α−∗ )2/4 A(α−∗ , β)

[ 2 (τ +F 2α−∗ )− α−∗ /k−∗ ](α− α−∗ )/k

and (α, β) = k (cosγ, sinγ) . (12.26b)

The Kochin function A(α, β) in the Fourier potential φF and in the
corresponding wave and local-flow potentials defined by (12.24a), (12.25)
and (12.26) is general. These expressions can then readily be applied to
evaluate the waves and the local flow created by any given distribution of
singularities. The decomposition (12.24b) is nearly optimal if C ≈ 1/2 .

12.4 Ship advancing through regular waves
in the regime 0 ≤ τ < 1/4

Ships advancing through regular waves in the regime 0 ≤ τ < 1/4 are now
considered. Two Rankine-Fourier decompositions GR + GF of the Green
function G associated with this class of flows are given in chapter 7. The
Rankine components GR in these alternative decompositions are defined
by (7.42a) or (7.43a-c), which involves two additional elementary Rankine
sources. The Fourier components GF that correspond to these alternative
Rankine components GR are defined by (7.6c) or (7.46) as

GF =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
Â(k,γ) e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

(f+Fα)2/k −1+ i ε sign(f+Fα)
where (12.27a)

Â(k,γ) ≡ 1 if GR = −1/r + 1/r′ or (12.27b)

Â(k,γ) ≡ 1+ e−F
2k (1− e−k/f2

)[(f+Fα)2/k −1] (12.27c)

if GR = −1/r +1/r′− 2/rF+ 2/rFf (12.27d)

with r, r′, rF and rFf given by (7.43b-c). The two alternative representations
of the Green function G associated with expressions (12.27b) or (12.27c-d)
both correspond to optimal Rankine-Fourier decompositions of the Green
function G appropriate for a ship that advances through regular waves.

One has Â = 1 in (12.27b) and the Rankine component GR in (12.27b)
only contains two Rankine sources, which do not involve the Froude number
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F or the (adimensional) wave frequency f. This simpler Rankine-Fourier
decomposition is then preferable to the alternative decomposition associated
with the Rankine component (12.27d), which involves the two additional
Rankine sources 1/rF and 1/rFf that depend on F and f, for most practical
applications. Indeed, the simpler Rankine-Fourier decomposition (12.27b)
is used in sections 10.1-5.

However, in the limits F → 0 or f → 0 , the Rankine-Fourier decom-
position GR +GF that is associated with the somewhat more complicated
Rankine component GR and function Â given by (12.27c-d) is consistent
with the optimal Rankine-Fourier decompositions that are given in chapter
7 for the special cases f = 0 or F = 0 . Specifically, the Rankine-Fourier
representation (7.44), (7.43) and (7.46) of the Green function associated
with a ship steadily advancing through regular waves is consistent with the
Rankine-Fourier representations (7.16) and (7.25) that correspond to the
special cases f = 0 or F = 0 , whereas these Rankine-Fourier decompo-
sitions are not consistent with the limits f → 0 or F → 0 of the simpler
Rankine-Fourier decomposition (12.27b) as is shown in section 7.7.

Expression (12.27a) for the Fourier component GF is considered in this

section for a general function Â that can be taken as Â = 1 in accordance
with (12.27b) or as the function defined by (12.27c). In the latter case, the

value of the function Â at the dispersion curves defined by the dispersion
relation (f+Fα)2 = k is

Â∗ = 1 . (12.28)

The Fourier potential φF(x) that corresponds to the Fourier component
GF defined by (12.27a) and a Kochin function A(α, β) associated with a
general distribution of singularities is then expressed as

φF(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
Â(k,γ) e kz+ i(αx+β y)A(α, β)

(f+Fα)2/k −1+ i εsign(f+Fα)
. (12.29)

In the regime 0 ≤ τ < 1/4 that is considered in this section, the general
Fourier potential (12.29) can be decomposed as

φF(x) = φFi (x) + φFo (x) (12.30)

where the components φFi and φFo correspond to the components GFi and
GFo in the fundamental decomposition of the Fourier component GF that is
defined by expressions (7.53) as

GF = GFi +GFo where (12.31a)

GFi ≡
1

π

∫ π

−π
dγ

∫ ∞
0

dk
k Â(k,γ)√
1− 4τ cosγ

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

ki∗(γ)− k + i ε
, (12.31b)

GFo ≡
1

π

∫ π

−π
dγ

∫ ∞
0

dk
k Â(k,γ)√
1− 4τ cosγ

e k (z+ζ )+ i [α (x−ξ)+β (y−η) ]

k − ko∗(γ) + i ε sign(cosγ)
. (12.31c)
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The functions ki∗ ≡ ki∗(γ) and ko∗ ≡ ko∗(γ) in (12.31b) or (12.31c) are given by

ki∗/f
2≡ 1/(

√
1/4− τ cosγ +1/2)2 and (12.31d)

F 2ko∗ ≡ (
√

1/4− τ cosγ + 1/2)2/cos2γ . (12.31e)

Expressions (12.31a-c) readily show that the Fourier potentials φFi (x) and
φFo (x) in (12.30) are given by

φFi =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
Â(k,γ) k/ki∗√

1− 4τ cosγ

ekz+i k (x cosγ+y sinγ)

1− k/ki∗ + i ε
A(α, β) , (12.32a)

φFo =
1

π

∫ π

−π
dγ

∫ ∞
0

dk
Â(k,γ) k/ko∗√

1− 4τ cosγ

ekz+i k (x cosγ+y sinγ)

k/ko∗ −1+ i ε sign(cosγ)
A(α, β) .

(12.32b)

The components GFi and GFo in (12.31a) and the corresponding Fourier
potentials (12.32a) and (12.32b) are associated with the inner dispersion
curve I located in the inner region −k−i ≤ α ≤ k+

i or the outer dispersion
curves O− and O+ located in the two outer regions −∞ < α ≤ −k−o and
k+
o ≤ α <∞ where k±i and k±o are defined by (5.8). As is shown in chapter

5 and is illustrated in Fig.5.9 and Fig.5.10, the inner dispersion curve I and
the corresponding Fourier potential φFi are associated with a system of ring
waves that are best scaled with respect to the wave frequency ω , whereas
the outer dispersion curves O+ and O− and the related Fourier potential
φFo are associated with two systems of Kelvin-like V waves best scaled with
respect to the ship speed Vs .

Wave potential φWi associated with ring waves

The closed inner dispersion curve I is conveniently represented in the polar
form k= ki∗(γ) where ki∗(γ) is given by (12.31d). The Fourier potential φFi
associated with the contribution of the inner dispersion curve I and defined
by (12.32a) is of the form (11.33a) with

∆ =
√

1− 4τ cosγ (ki∗ − k) , ∆1 = 1 (12.33a)

and A(k,γ) = Â(k,γ) ekz k A(k,γ) . (12.33b)

One then has

∆k = −
√

1− 4τ cosγ and sign(∆1 ∆k) = −1 . (12.33c)

The wave potential φWi that corresponds to the Fourier potential (12.32a)
is determined by (11.34a) and (12.33) as

i φWi (x) =

∫ π

−π
dγ Θiki∗

e k
i
∗ z+i ki∗ (x cosγ+y sinγ)

√
1− 4τ cosγ

A(ki∗ , γ) (12.34a)

where Θi = 1+ erf[ ki∗(x cosγ + y sinγ)/C ] (12.34b)
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and ki∗ ≡ ki∗(γ) is given by (12.31d).

Wave potential φWo associated with V waves

The wave potential φWo associated with the outer dispersion curves O+ and
O− is now considered. The two open outer dispersion curves O+ and O−

are defined via the Cartesian representation (12.23a). The Fourier potential
(12.32b) is then expressed in the equivalent Cartesian form

φFo (x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα

Â(k,γ) ekz+i (αx+β y)A(α, β)√
1− 4τ α/k (k − ko∗) + i ε sign(α)

. (12.35)

The Fourier potential φFo defined by (12.35) is of the form (11.21a) with

∆(α, β) =
√

1− 4τ α/k (k − ko∗) , ∆1(α, β) = sign(α) (12.36a)

and A(α, β) = Â(k,γ) ekzA(α, β) . (12.36b)

Expression (12.31e) yields

∆α(α±∗ , β) = 2 (τ +F 2α±∗ )− α±∗ /k±∗ , (12.36c)

where α±∗ (β) are the dispersion curves defined by (5.29) and k±∗ (β) are
given by (12.23b).

At the dispersion curves α = α±∗ (β) , one has

F 2α+
∗ ≥ F 2α+

∗ (β = 0) ≡
(√

1/4− τ + 1/2
)2

and

F 2α−∗ ≤ F 2α−∗ (β = 0) ≡ −
(√

1/4 + τ + 1/2
)2

where α±∗ (β = 0) are solutions of the dispersion relation (f+Fα)2∓ α = 0
at β = 0. One has

τ +F 2α+
∗ ≥ 1/2 +

√
1/4− τ > 0 ,

2(τ +F 2α+
∗ )− α+

∗ /k
+
∗ ≥

√
1− 4τ > 0 and

τ +F 2α−∗ ≤ −(1/2 +
√

1/4 + τ) < 0 ,

2(τ +F 2α−∗ )− α−∗ /k−∗ ≤ −
√

1 + 4τ < 0 .

where the relations α+
∗ /k

+
∗ ≤ 1 and α−∗ /k

−
∗ ≥ −1 were used.

In summary, one has

±∆α(α±∗ , β) > 0 and sign(∆∗1 ∆∗α) = 1 . (12.36d)
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The wave potential φWo that corresponds to the Fourier potential (12.35) is
determined by (11.22) and (12.36) as

i φWo (x) =

∫ ∞
−∞
dβ

[
1− erf(α+

∗ x/C )

2 (τ +F 2α+
∗ )− α+

∗ /k
+
∗
ek

+
∗ z+i (α+

∗ x+β y)A(α+
∗ , β)

+
1+ erf(α−∗ x/C )

2 (τ +F 2α−∗ )− α−∗ /k−∗
ek
−
∗ z+i (α−∗ x+β y)A(α−∗ , β)

]
(12.37)

where k±∗ ≡ k±∗ (β) ≡
√

(α±∗ )2 + β2 and α±∗ ≡ α±∗ (β) is defined by (5.29).

Local-flow potential φLi

The local flow potential φLi that corresponds to the potentials (12.32a) and
(12.34) is defined by (11.32) and (12.33) as

φLi (x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk e i k (x cosγ+y sinγ)ALi (k, γ) where (12.38a)

ALi (k, γ) ≡ Â(k,γ) ekz A(k,γ)

(ki+/k −1)
√

1− 4τ cosγ
− ek

i
+z−C

2(1−k/ki+ )2/4A(ki+ ,γ)

(1− k/ki+)
√

1− 4τ cosγ

− ek
i
−z−C

2(1+k/ki− )2/4A(ki− ,γ−π)

(1+ k/ki−)
√

1+ 4τ cosγ

with ki+ ≡ ki∗(γ) and ki− ≡ ki∗(γ−π) . (12.38b)

Moreover, ki∗ ≡ ki∗(γ) is given by (12.31d).

Local-flow potential φLo

The local flow potential φLo that corresponds to the potentials (12.35) and
(12.37) is determined by (11.23) and (12.36) as

φLo (x) =
1

π

∫ ∞
−∞
dβ

∫ ∞
−∞
dα ALo (α, β) e i (αx+β y) where (12.39a)

ALo (α, β) ≡ Â(k,γ) ekzA(α, β)√
1− 4τ α/k (k − ko∗ )

− ek
+
∗ z−C

2(α/α+
∗ −1)2/4A(α+

∗ , β)

(α− α+
∗ )[ 2 (τ +F 2α+

∗ )− α+
∗ /k

+
∗ ]

− ek
−
∗ z−C

2(α/α−∗ −1)2/4A(α−∗ , β)

(α− α−∗ )[ 2 (τ +F 2α−∗ )− α−∗ /k−∗ ]

with k±∗ ≡ k±∗ (β) ≡
√

(α±∗ )2 + β2 . (12.39b)

Moreover, α±∗ ≡ α±∗ (β) is defined by (5.29).
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Local-flow potential φL = φLo + φLi

Expressions (12.38) and (12.39) finally determine φL = φLi + φLo as

φL(x) =
1

π

∫ π

−π
dγ

∫ ∞
0

dk AL(k,γ) e i k (x cosγ+y sinγ) (12.40a)

where AL(k,γ) ≡ ALi (k,γ) + kALo (k,γ) is given by

AL(k, γ) =
ekz Â(k,γ)A(k,γ)

(f + Fα)2/k −1

− ek
i
+ z−C

2 (1−k/ki+ )2/4A(ki+ ,γ)

(1− k/ki+)
√

1− 4τ cosγ
− ek

i
− z−C

2 (1+k/ki− )2/4A(ki− ,γ−π)

(1+ k/ki−)
√

1+ 4τ cosγ

− ek
+
∗ z−C

2 (1−α/α+
∗ )2/4A(α+

∗ , β)

[ 2 (τ +F 2α+
∗ )− α+

∗ /k
+
∗ ](α− α+

∗ )/k

− ek
−
∗ z−C

2 (1−α/α−∗ )2/4A(α−∗ , β)

[ 2 (τ +F 2α−∗ )− α−∗ /k−∗ ](α− α−∗ )/k

with ki+ ≡ ki∗(γ) , ki− ≡ ki∗(γ−π) , k±∗ ≡
√

(α±∗ )2 + β2 (12.40b)

and (α, β) = k (cosγ, sinγ). Moreover, ki∗(γ) and α±∗ ≡ α±∗ (β) are defined
by (12.31d) and (5.29).

Summary: waves and local-flow decomposition

The decomposition (12.30) and the decompositions

φFi = φWi + φLi , φFo = φWo + φLo and φL = φLi + φLo

show that the flow potential φF(x) given by (12.29), where the Kochin
function A(α, β) is general, can finally be expressed as

φF(x) = φWi (x) + φWo (x) + φL(x) (12.41)

where the wave components φWi and φWo are given by (12.34) or (12.37) and
the local-flow component φL is defined by (12.40).

In the limit F = 0, the flow potential (12.41) agrees with the potential
φW+φL that is defined by (12.9) and (12.10) and corresponds to diffraction-
radiation of regular waves by offshore structures. In the limit f = 0, the flow
potential (12.41) also agrees with the potential φW + φL given by (12.17-
12.18) and associated with a ship that steadily advances in calm water.
Thus, the flow representation defined by (12.41) with (12.34), (12.37) and
(12.40) is consistent with both the flow representations (12.8-12.10) and
(12.16-12.18) in the limits F = 0 or f = 0 .
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12.5 Conclusion

The amplitude (Kochin) functions A(α, β) or A(k,γ) in the expressions
for the Fourier potentials φF and the corresponding wave and local-flow
components φW and φL given in this chapter for an offshore structure in
regular waves and a ship that advances in calm water or through regular
waves are associated with Fourier-Kochin flow representations for general
distributions of singularities, e.g. a source distribution over a panel. Both
the wave component φW and the non-oscillatory local-flow component φL

in the fundamental decomposition φF = φW + φL involve the real number
C. Although the sum φW + φL is independent of C, the choice C ≈ 1/2 is
shown in chapter 11 to yield nearly optimal flow decompositions.

The wave components φW in the flow representations φF = φW+φL are
defined by single Fourier integrals with smooth integrands. The local-flow
components φL(x) are the double Fourier transforms of amplitude functions
AL/k where the functions AL(k,γ) vanish as k → ∞ and are finite or nil
at k = 0 . Moreover, the functions AL(k,γ) are non-oscillatory and smooth
everywhere, notably at the dispersion curves. Thus, the flow representations
given in this chapter are suited for accurate numerical evaluation of flows
created by general distributions of singularities [12,2].
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Notes

This chapter gathers the notes marked as [m,n] in chapters 1-12. The note
[m,n] corresponds to note number n in chapter number m .

[1,1] See e.g., Molin (2023) and Faltinsen (1993).

[1,2] The upper bound (1.9) has a determining influence on the bow
wave created by a ship that steadily advances in calm water, notably the
boundary between the steady and unsteady bow-wave regimes as is shown
in Noblesse et al. (2008b) and Delhommeau et al. (2009).

[1,3] In particular, a perturbation analysis for ambient waves of small
amplitude leads to the formulation of a hierarchy of approximations φ1 ,
φ2 , . . . and a related sequence of boundary-value problems with free-surface
pressure pF = pFk+1 and body-surface flux qH = qHk+1 in (1.35d-e) that is de-
fined in terms of the flow potentials φ1 , . . . , φk and therefore is known in the
boundary-value problem associated with the potential φk+1 . This weakly-
nonlinear perturbation analysis is used to estimate drift forces, yaw moment
and nonlinear wave loads for offshore structures and ships in waves in a
broad literature, e.g. Maruo (1960), Newman (1967), Molin (1979), Hunt
and Baddour (1981), Chau and Eatock Taylor (1992), Faltinsen (1993),
Malenica and Molin (1995), Newman (1996), Rahman (1998), Teng and
Kato (2002), Buldakov et al. (2004), Rahman and Mousavizadegan (2005),
Molin (2023).

[1,4] The straightforward approach in which a steady or time-harmonic
flow is analyzed as a flow that slowly grows from rest at a time T = −∞, as
in (1.19) and (1.22), is adopted throughout the book. This approach, used
in Lighthill (1967,1978), is equivalent but considerably simpler than the use
of a ‘radiation condition’ or Rayleigh’s ‘artificial viscosity’. Lighthill’s way
leads to the generalized elementary waves expounded in Noblesse and Yang
(2007) and in chapter 2 of the book.

[1,5] The sinkage and the trim experienced by a freely floating common
monohull ship that steadily advances in calm deep water at a moderate
Froude number F ≤ 0.45 can be estimated—without flow computations—
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in terms of the ship speed and four basic parameters related to the ship-hull
geometry (length, beam, draft and block coefficient) via simple analytical
relations, obtained in Ma et al. (2016) by means of an analysis of experimen-
tal data and elementary theoretical considerations. Ma et al. (2016) shows
that good estimates of sinkage and trim can also be obtained via a simple
numerical method. Ma et al. (2017) shows that sinkage and trim effects on
the total (viscous and wave) drag of a typical freely floating monohull ship
is significant at Froude numbers 0.25 < F and can be realistically accounted
for in a practical manner that only requires simple potential flow computa-
tions for the ship hull in equilibrium position at rest, i.e. without iterative
computations for a sequence of hull positions.

[1,6] The classical analysis and decomposition of the flow around an
offshore structure undergoing small oscillatory motions in ambient regular
waves into a ‘wave-diffraction problem’ and six ‘wave-radiation problems’
is explained in e.g. Newman (1977), Faltinsen (1993), Molin (2023) and
numerous studies of interactions between regular water waves and floating
bodies.

[2,1] The analysis of generalized elementary free waves expounded in
chapter 2, notably in sections 2.8 and 2.9, largely follows Noblesse and
Yang (2007).

[2,2] Green’s fundamental boundary-integral flow representation, given
in chapter 6, shows that a closed non-lifting body appears as a dipole in
the far field, and accordingly creates a flow velocity proportional to 1/r3 as

r ≡
√
x2 + y2 + z2 →∞ .

[2,3] The energy transported via the waves created by a wavemaker (ship
or offshore structure) is proportional to the width of the wave front, which
increases in proportion to the horizontal distance h from the wavemaker,
and moreover is proportional to the square of the wave amplitude a. Thus,
the energy radiated by a wavemaker is proportional to h a2. It follows that
a ∝ 1/

√
h if the energy radiated by the wavemaker is transported without

significant loss (e.g. due to wavebreaking, which mostly occurs in the vicinity
of the wavemaker).

[2,4] The equivalence, noted in [1,4] , between the approach adopted in
the book, where a steady or time-harmonic flow is analyzed as a flow that
slowly grows from rest at a time T = −∞ , and a ‘radiation condition’ or
Rayleigh’s ‘artificial viscosity’ is considered in Noblesse and Yang (2007).

[3,1] The stationary-phase approximation (3.12) was first given by
William Thomson (1824-1907), also known as Lord Kelvin, in Thomson
(1891) to explain the pattern of far-field waves—now widely known as
Kelvin’s wake—created by a ship that steadily advances in calm water.

[3,2] Asymptotic approximations of integrals is a classical topic consid-
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ered in a broad literature, e.g. Erdélyi (2010), Copson (1965), Bleistein and
Handelsman (1986), Wong (1989). The integral (3.9) occurs in the rep-
resentation of the waves created by a ship that steadily advances in calm
water, first analyzed by Kelvin as is noted in [3,1] . Accordingly, far-field
asymptotic approximations have been extensively studied for this histori-
cally important case, now briefly considered. Kelvin’s approximations (3.12)
holds strictly inside the Kelvin wake that trails a ship steadily advancing
in calm water. Havelock’s approximation (3.13), given in Havelock (1908),
only holds at the cusps of the Kelvin wake. An asymptotic approxima-
tion that holds strictly outside the cusps of the Kelvin wake is given in
Peters (1949). This asymptotic approximation shows that ship waves de-
cay exponentially outside the cusps of the wake, in accordance with the
analysis of the integral (3.9) for the case Θ′0 6= 0 , except in the vicinity
of the cusps where the free-surface elevation decays as 1/h1/3 as h → ∞ .
Thus, large ship waves can exist outside the Kelvin wake, as is illustrated
in Wu et al. (2019b). Kelvin’s and Peters approximations both are singu-
lar at the cusps of Kelvin’s wake, where Havelock’s approximation holds.
An approximation that combines the Kelvin, Havelock and Peters approx-
imations is given in Wu et al. (2018b) and Liang et al. (2020a). This ap-
proximation, called Kelvin-Havelock-Peters (KHP) approximation, is nearly
identical to Kelvin’s and Peters’ approximations inside or outside the cusps
of Kelvin’s wake, but agrees with Havelock’s approximation at the cusps
(where Kelvin’s and Peters’ approximations are singular). A more accurate
uniform far-field approximation, which is also finite everywhere, has been
given by Chester et al. (1957) and revisited by Borovikov (1994). This
approximation involves the Airy function and is then more complicated
than the KHP approximation, which only involves ordinary functions. The
asymptotic approximations to far-field ship waves given by Kelvin, Have-
lock, Peters and Chester et al. are considered, applied or extended in a large
literature, briefly reviewed in e.g. Liang et al. (2020a).

[3,3] Interferences among the divergent waves created (predominantly)
by the bows and the sterns of high-speed vessels, notably longitudinal in-
terferences between the divergent waves created by the bow and the stern
of a monohull ship and lateral interferences between the divergent waves
created by the twin bows of a catamaran, have been widely studied; e.g.
Noblesse et al. (2014b), Zhang et al. (2015c), Miao and Liu (2015), He et
al. (2016), Noblesse et al. (2016), Zhu et al. (2017,2018a-b) and Colen and
Kolomeisky (2021).

[3,4] Indeed, the Froude number and the submergence depth can have a
large, even striking, influence on the appearance of the wave pattern created
by a ship that steadily advances in calm deep water, as is illustrated in Wu et
al. (2019b). In particular, at high Froude numbers F , e.g. at F = 1.5, a ship
wave pattern mostly contains divergent waves that are most apparent along
rays well inside the cusps of the Kelvin wake due to interferences between
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the dominant waves created by the bow and the stern of the ship. A very
different wave pattern is observed at low Froude numbers, e.g. at F = 0.2,
for which the dominant waves are found outside the cusps of the Kelvin
wake. Thus, the wave patterns created by surface-piercing or submerged
bodies can greatly differ from Kelvin’s classical pattern of transverse and
divergent waves found inside a 39◦ wedge trailing a ship.

[4,1] The result that a ship that steadily advances in calm water only
creates waves aft of the ship follows from expression (1.19), which defines a
steady flow as a flow that slowly grows from rest, and the related analysis
expounded in chapter 2. This rigorous analysis proves—without the need
for a radiation condition based on observations—that steady ship waves
only exist behind a ship.

[4,2] The studies of short waves reported in Wu et al . (2018c,2019a)
provide strong evidence that short divergent waves created by a ship that
steadily advances in calm deep water are too steep to exist within a broad
inner wake with angle roughly equal to a third of Kelvin’s 39◦ wake. The
short divergent waves created by a ship bow are also too steep to exist in
the vicinity of the fore shoulder of the hull of a ship that steadily advances
in calm deep water at Froude numbers smaller than about 0.35, as is shown
in He et al. (2020a).

[5,1] The wave patterns created by a ship that steadily advances through
regular waves, and the related Green function considered in chapter 7, have
been studied in a vast literature; e.g. Haskind (1946), Brard (1948), Streten-
ski (1954), Hanaoka (1957), Eggers (1957), Havelock (1958), Wehausen and
Laitone (1960), Lighthill (1967), Noblesse and Hendrix (1992).

[6,1] John Henry Michell (1863-1940) published his remarkable theory
of the wave resistance of a ship that steadily advances in calm water in
1898. This theory, expounded in Michell (1898), was ignored for about
thirty years, but became famous and widely used after that long period of
initial neglect, and the theory remains useful and relevant for ship design to
this day. The theory considers a ‘thin ship’ with small beam/length ratio.
The ship-hull boundary conditions (1.35e) and (1.36) for a ship-hull surface
defined as η = ±b(ξ, ζ), where b(ξ, ζ) denotes the local beam, yield the
boundary condition

∂ηφ = ±F bξ /
√

1+ b2
ξ + b2

ζ at η = ±b .

This boundary condition is applied at the ship centerplane η = 0 , rather
than at the actual hull surface η = ± b(ξ, ζ), in Michell’s thin-ship theory.
The solution of the resulting ‘thin-ship’ boundary-value problem in the re-
gion −∞ < ξ < ∞ , 0 ≤ η < ∞ ,−∞ < ζ ≤ 0 can then be obtained via
Fourier transformation. This simple and beautiful theory explicitly deter-
mines the flow and the wave drag of a ship in terms of the speed, the length
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and the hull-shape of the ship.

[6,2] Analytical solutions of the boundary-value problem (1.35) exist
for simple special geometries; e.g. Havelock (1952), Farell (1973), Hulme
(1982), Yeung (1982), Wu and Eatock Taylor (1987b,1989), Chatjigeorgiou
and Miloh (2014a-b,2015) and Chatjigeorgiou (2013,2018).

[6,3] The method of Green function and boundary-integral represen-
tation is due to the extraordinary British mathematical physicist George
Green (1793-1841), who was almost entirely self taught. Green’s method is
largely expounded in Green (1828), a remarkable study that contains all the
essential elements—including concepts now known as Green’s theorem and
Green’s functions—of the method of Green function and boundary-integral
representation. This method, expounded in the book for flows around ships
and offshore structures, is widely used in engineering and physics. A biog-
raphy of George Green is given in Cannel (1993,1999).

[6,4] A brief introduction to generalized functions and Fourier analysis
is given in Lighthill (1958).

[7,1] The complementary ‘Fourier-space’ and ‘physical-space’ analyses
expounded in sections 7.2–7.6 largely follow Noblesse (2001a-b). The opti-
mal Rankine-Fourier decompositions GR + GF given by (7.16) and (7.25),
and the related consistent Rankine-Fourier decomposition (7.43) and (7.46)
are also given in that study. The optimal Rankine-Fourier decomposition
(7.32)-(7.33) is given in Wu et al. (2021).

[7,2] Expressions (7.53) are given in He et al. (2022a) and are primarily
due to the book’s second author.

[7,3] Several studies of the Green function G associated with a ship that
steadily advances through regular waves and of the corresponding far-field
wave patterns are listed in [5,1]. This Green function and the integra-
tion of G and its gradient over hull-surface panels and waterline segments
have been widely considered; e.g., Bessho (1977), Chang (1977), Inglis
and Price (1981,1982), Guevel and Bougis (1982), Wu and Eatock Tay-
lor (1987a,1989), Iwashita and Ohkusu (1989,1092), Ohkusu and Iwashita
(1989), Noblesse and Hendrix (1990,1992), Zong and Huang (1991), Du et
al. (1999), Guilbaud et al. (2001), Chen and Wu (2001), Maury et al. (2003),
Noblesse and Yang (2004), Chapchap et al. (2011), Xu and Dong (2011),
Hong et al. (2016), Chen and Liang (2016), Yang et al. (2019a-b) and He
et al. (2020c,2021a,2022a).

[7,4] The Green function associated with a ship that steadily advances
in calm deep water, and the integration of G and its gradient over hull-
surface panels and waterline segments, are considered in a broad literature,
which begins with Michell’s celebrated study of the wave resistance of a
ship in Michell (1898) and includes Havelock (1932), Peters (1949), Lunde
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(1951), Kostyukov (1959), Wehausen and Laitone (1960), Wehausen (1973),
Standing (1974), Noblesse (1975a,1977,1978a-b), Shen and Farell (1977),
Newman (1987a-b), Telste and Noblesse (1989), Day and Doctors (2001),
Faltinsen (2005), Zilman(2006). In particular, these studies include three
alternative single-integral representations of the Green function and corre-
sponding decompositions into waves and non-oscillatory local flows given
in Noblesse (1981), analytical expansions given in Noblesse (1975a,1978a-b)
and Newman(1987a-b), and practical methods for evaluating the local-flow
component in the Green function given in Ponizy et al. (1994), Noblesse et
al. (2009a-b,2011b) and Wu et al. (2016).

[7,5] The Green function associated with diffraction-radiation of regular
waves by offshore structures in deep water has been extensively considered in
a vast literature, including Havelock (1942), Haskind (1944), Ursell (1949),
John (1950), Kochin (1952), Thorne (1953), Haskind (1954), MacCamy
(1954), Havelock (1955), Wehausen and Laitone (1960), Kim (1965), We-
hausen (1971), Hearn (1977), Martin (1980), Hulme (1982), Wu and Eatock
Taylor (1987b). Three complementary single-integral representations of the
Green function and related near-field and far-field asymptotic expansions
and Taylor series are given in Noblesse (1982). These analytical approxi-
mations are the basis of the method for evaluating the Green function and
its gradient given in Telste and Noblesse (1986) and Chakrabarti (2001).
Other methods include table interpolation associated with function and co-
ordinate transformations given in Ponizy et al. (1994), polynomial approx-
imations within complementary contiguous flow regions given in Newman
(1984,1985), Chen (1991), and representations in terms of ordinary differ-
ential equations considered in Clément (2013), Shen et al. (2016), Xie et
al. (2019). The Green function G for diffraction-radiation of regular water
waves is also considered in Wang (1992), Peter and Meylan (2004), Yao et
al. (2009), D’elia et al. (2011), Shan and Wu (2018), Shan et al. (2019)
and Chen (2015,2019). A comparison of several alternative methods for
evaluating this Green function is given in Xie et al. (2018). A particularly
simple and efficient method for evaluating G and its gradient is given in Wu
et al. (2017,2018a) and validated in Liang et al. (2018a). This method is
based on global analytical approximations that are valid within the entire
flow region. Liang et al. (2021) shows that higher-order derivatives of G can
readily be determined from the Green function and its gradient.

[7,6] The Green function associated with diffraction-radiation of regular
waves by an offshore structure in water of uniform finite depth has been
extensively studied, and alternative calculation methods exist. These stud-
ies and calculation methods include complementary analytical expansions
given in John (1950), Pidcock (1985), Linton (1991,1999), Liu et al. (2015),
polynomial approximations within complementary contiguous regions given
in Newman (1985), Chen (1993) and Mackay (2019), table interpolation
used in Delhommeau (1989) and direct numerical integration considered in
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Cuer (1989), Liu et al. (2015,2020), Xie et al. (2017), Chen (2020), He et
al. (2020b), Wu et al. (2021).

[8,1] Sections 8.1–8.3 largely follow Noblesse (1983b), where the
boundary-integral flow representation (8.18) is given. Sections 8.4 and 8.5
follow the first author’s work, reported in He et al. (2021c).

[8,2] Numerical studies of weakly-singular boundary integral equations
are given in He et al. (2023b) for potential flows in the zero or infinite gravity
limits.

[8,3]. Specifically, irregular frequencies correspond to eigensolutions of
the interior boundary-value problem with a Dirichlet boundary condition
at the body surface.

[8,4] The existence of irregular frequencies is demonstrated in Lamb
(1932) and John (1949,1950) for diffraction radiation of acoustic or wa-
ter waves, and is well explained in several subsequent studies, notably in
Lau and Hearn (1989) and Liapis (1993) where two effective and practi-
cal methods for suppressing irregular frequencies are proposed and applied,
and a review of alternative methods for preventing irregular frequencies is
also given. Two main classes of methods have been considered to suppress
irregular frequencies. These two classes of methods are ‘modified integral-
operator methods’, which essentially consist in formulating an integral equa-
tion where the integral operator (kernel) related to the Green function is
modified, and ‘modified integral-equation-domain methods’ in which the
body surface where the integral equation is formulated is extended. The
first class of methods, i.e. the ‘modified integral-operator method’, is con-
sidered in Burton and Miller (1971), Ursell (1973), Jones (1974), Kleinman
and Roach (1974), Ogilvie and Shin (1978), Sayer and Ursell (1980), Ursell
(1981), Martin (1981), Kleinman (1982), Wu and Price (1986,1987), Lee
and Sclavounos (1989) and Liapis (1993). The ‘modified integral-equation-
domain method’ is adopted in Schenk (1968), Ohmatsu (1975,1983), Reza-
yat et al. (1986), Lau and Hearn (1989), Lee et al. (1996), Lee and New-
man (2005), Malenica and Chen (1998), Sun et al. (2008) and Liang et al.
(2020b), where extensive applications of the ‘combined boundary-integral
equation method’ (CBIEM) proposed in Lau and Hearn (1989) are given.
An elementary explanation, based on applications of Green’s classical iden-
tity to the usual ‘free-waterplane’ linear flow-model and the alternative
‘rigid-waterplane’ flow model, of the CBIEM is given in chapter 8 of the
book.

[9,1] The applications of Green’s basic identity to the Neumann-Kelvin
flow model in sections 9.1–9.3 and to the rigid-waterplane flow model in sec-
tions 9.4–9.6 are based on the first author’s work. This work was previously
reported in He et al. (2019b) and in Noblesse and Yang (2023) where the
boundary-integral flow representations (9.15) and (9.23), and the related
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RW-hw, RW-h and NN flow representations are obtained in the manner
expounded in sections 9.1–9.6. The analysis of the Neumann-Michell flow
model given in section 9.8 was previously given in Noblesse et al. (2013b).

[9,2] The Neumann-Kelvin (NK) problem and related numerical studies
are considered in a broad literature. For the particular case of a ship that
steadily advances in calm water, these theoretical and numerical studies
include Brard (1972), Guevel et al. (1974,1977), Chang (1979), Tsutsumi
(1979), Tsai et al. (1983), Baar (1986), Andrew et al. (1987), Doctors and
Beck (1987), Baar and Price (1988), Scragg and Talcott (1988), Marr (1996),
Diebold (2007), Noblesse et al. (2013b), Liang et al. (2018b), He et al.
(2018a,2021b). Theoretical and numerical studies of the NK problem for a
ship that advances through regular waves are reported in e.g. Guevel and
Bougis (1982), Inglis and Price (1982), Iwashita and Ohkusu (1989), Wu and
Eatock Taylor (1989), Iwashita and Ohkusu (1992), Noblesse and Hendrix
(1992), Du et al. (1999), Chapchap et al. (2011), Peng et al. (2015), Hong
et al. (2016), He et al. (2019b).

[9,3] The restriction (9.26) imposed in chapter 8 for wave diffraction-
radiation by a stationary body is a mathematical ‘consistency-condition’
that ensures consistency of the boundary conditions at the rigid lid ΣHi and
at the waterplane ΣFi in the limit δ → 0, whereas the particular solution
C±1 = 0 and C±2 = 0 in (9.27) and the particular solution Cn = 0 with
0 ≤ n ≤ 3 in (9.28b) are flow-modeling assumptions, as is explained in
section 9.7.

[9,4] For a ship that steadily advances in calm water, the boundary
condition (1.27) at the ship-hull surface ΣH and the nonlinear boundary
condition at the free surface ΣF are shown in Noblesse et al. (1991,2012)
to be compatible. However, the boundary condition at the ship-hull surface
ΣH and the linear boundary condition (1.21) at the free surface ΣF have not
been shown to be compatible, and indeed likely are not compatible. This
feature is also likely to be a main cause of the numerical difficulties associ-
ated with solutions of the classical NK boundary-integral flow representation
noted in [9,5], and is the primary motivation for seeking boundary-integral
flow representations that do not involve the flow potential at the waterline
of the ship.

[9,5] Accurate solutions of the Neumann-Kelvin boundary-integral flow
representation are notoriously difficult due to difficulties associated with
the line integral around the ship waterline that is present in the NK theory.
Marr (1996) summarizes these difficulties by concluding that “the Neumann-
Kelvin theory, as it is currently understood, does not give satisfactory wave
resistance results for realistic ship hull forms. These results lead to, and
reinforce, the suggestion that the problem lies with the waterline integral
term; a new treatment of this term may substantially increase the appli-
cability of Neumann-Kelvin theory”. Additional evidence of the difficulties
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associated with the waterline integral are given in Diebold (2007) and in
Liang et al. (2018) where the waterline integral is found to result in an
ill-conditioned matrix of influence coefficients. Thus, conclusions about the
importance of the waterline integral in the NK theory cannot be stated
with certainty. However, the numerical study given in Peng et al. (2015)
provides some evidence that the troublesome waterline integral in the NK
theory only has a modest influence.

[9,6] Indeed, the NN flow representation (9.35) was first given for wave
diffraction radiation by an offshore structure in Noblesse (1983b).

[9,7] Alternative boundary-integral flow representations that do not in-
clude a waterline integral are given in He et al. (2021b,2022b,2023a), where
mathematical transformations based on vector Green functions G associated
with the scalar Green function G are used. However, these flow represen-
tations are significantly more complicated than the NN flow representation
(9.35) based on the rigid-waterplane linear flow model and the no-flow re-
striction (9.33).

[9,8] The Neumann-Michell (NM) theory, proposed in Noblesse et al.
(2013b), is applied and validated in Huang et al. (2013), Yang et al. (2013),
Zhang et al. (2014,2015a-b), Ma et al. (2016,2017,2018), and is used for
hull-form optimization in Huang et al (2014,2015a-b,2016), Huang and Yang
(2016), Yang et al. (2014), Yang and Huang (2016), and Wang et al. (2015).
The short waves predicted by the NM theory are considered in Wu et al.
(2018c,2019a).

[9,9] In particular, the Hogner approximation, proposed in Hogner
(1932), is shown be useful for hull-form optimization in Percival et al. (2001)
and indeed has been widely used for that purpose. This approximation is
also useful and has been extensively applied to analyze the influence of wave
interferences on the appearance of the far-field pattern of waves created by
a ship that steadily advances in calm deep water in Zhang et al. (2015c), He
et al. (2016), Noblesse et al. (2016) and Zhu et al. (2017,2018b). Lastly, the
Hogner approximation is used to investigate how to filter inconsequential
short ship waves in He et al. (2018b,2019a,2020a).

[9,10] Linearization of the free-surface boundary condition about the
flow around a ship hull and its mirror image with respect to the plane of
the undisturbed free surface, as in the ‘infinite-gravity’ limit g = ∞, is
considered in e.g. Ogilvie (1968), Hermans (1974), Baba (1975), Baba and
Takekuma (1975), Newman(1976) and Nakatake and Yamazaki (1976).

[9,11] Approximate analytical theories based on geometrical
assumptions—specifically thin-ship, flat-ship, slender-ship or deep-
submergence assumptions—have been extensively considered. In par-
ticular, for a ship that steadily advances in calm water, the thin-ship
approximation, first proposed in Michell (1898), has been considered and
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applied in numerous studies, e.g. Wigley (1926), Yeung (1972), Wehausen
(1973), Standing (1974), Noblesse (1975a-b,1978a), Noblesse and Dagan
(1976), Day and Doctors (2001), Noblesse et al. (2006,2008a,2009a,2011a),
Doctors (2015). Slender-ship approximations are given and applied in
Hogner (1932), Noblesse (1983a), Percival et al. (2001). Flows around
fully-submerged bodies are considered in e.g. Havelock (1932), Farell
(1973), Wang (1986), Chatjigeorgiou (2013). For ship motions in waves,
the strip theory and related 2D flow approximations, which take advantage
of the fact that ships are slender bodies, are widely used.

[9,12] Analytical, numerical and experimental studies of ship bow waves
and the related overturning bow wave and unsteady bow wave regimes, are
considered in Noblesse et al. (2006,2008a-b,2009a,2011a,2013a,2014a) and
Delhommeau et al. (2009).

[9,13] In particular, removal of the unrealistic and inconsequential short
divergent waves that are predicted by a linear potential flow analysis of the
waves created by a ship that advances in calm water or through regular
waves is necessary for numerical implementations. This important issue is
considered for a ship that advances through regular waves in section 5.5,
where a straightforward method for filtering inconsequential short waves is
expounded. The issue is also considered for a ship that advances in calm
deep water in Noblesse et al. (2013c), He et al. (2018b,2019a,2020a) and
Wu et al. (2018c,2019a). As is noted in [4,2], Wu et al. (2019a) shows that
a linear potential flow analysis of the waves due to a ship that advances
in calm water predicts short divergent waves that are too steep to exist in
reality within an inner Kelvin wake with angle that is about a third of the
39◦ Kelvin-wake angle, and He et al. (2020a) shows that a linear potential
flow analysis also predicts waves that are too steep to exist in reality around
the shoulder of common displacement ships at Froude numbers smaller than
about 0.35.

[9,14] The influence of nonlinearities in the free-surface boundary condi-
tion on the wave drag, the sinkage, the trim, and the wave profile along the
hull of four ship models is studied in Ma et al. (2018), which also considers
simple (post-processing) nonlinear corrections (that require no additional
flow computations) to the Neumann-Michell (NM) theory—based on the
Kelvin-Michell linear free-surface condition—to approximately account for
nonlinear effects. This study shows that nonlinear effects are relatively
small. However, an important exception to this general finding is that the
wave drag of a bulbous ship is greatly reduced due to the nonlinear com-
ponent of the pressure in the Bernoulli relation. This important nonlinear
effect, readily included in potential flow theory via a post-processing cor-
rection that accounts for the nonlinear component of the pressure in the
Bernoulli relation, also yields a small increase of the sinkage. Moreover,
free-surface nonlinearities can have appreciable, although not large, effects
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on the wave profile. These nonlinear effects can be approximately taken into
account via a simple transformation of the linear wave profile. Indeed, the
flow computations for the four ship models considered in Ma et al. (2018)
suggest that simple post-processing nonlinear corrections of the NM theory
yield numerical predictions of the wave drag, the sinkage, the trim and the
wave profile that agree well with experimental measurements, and compare
favorably with predictions given by more complex computational methods.

[10,1] This literature is briefly reviewed in [7,3]-[7,6].

[10,2] The Fourier-Kochin (FK) approach is formulated in Kochin (1952)
and Wehausen and Laitone (1960). This approach has been used extensively
to represent and evaluate the waves created by a ship that advances in
calm water, e.g. Zhang et al. (2015c), He et al. (2016,2020a), Zhu et al.
(2017,2018a-b), Wu et al. (2018c,2019a-b). A mixed approach, in which
the waves and the local flow are evaluated via the FK method or the usual
usual Green function method, is used in Noblesse et al. (2013b), Huang et
al. (2013) and Ma et al. (2017,2018), where the local flow is evaluated via the
simple global analytical approximations given in Noblesse et al. (2011b) and
Wu et al. (2016). The FK approach has also been used more generally to
represent both the waves and the non-oscillatory local flow—i.e. the entire
free-surface flow disturbance rather than only the wave component—created
by an offshore structure in waves or a ship that advances in calm water or
through regular waves. This more general application of the Fourier-Kochin
method is considered in Noblesse and Yang (1995), Noblesse et al. (1999),
Noblesse (2001a-b,2002), Chen (2013), He et al. (2020b-c,2021a,2022a) and
Wu et al. (2021). The FK method is applied to diffraction and radiation
about stationary floating bodies in Ugurlu and Guedes Soares (2021).

[11,1] Many important engineering problems—besides those considered
in the book—involve plane dispersive waves and have been widely consid-
ered; e.g., Squire et al. (1995,1996), Cadby and Linton (2000), Khabakh-
pasheva and Korobkin (2002), Squire (2008), Pogorelova (2011), Sturova
(2013), Meng (2017), Pogorelova et al. (2018), Hao et al. (2020).

[11,2] The analysis given in this chapter largely follows sections 7 and
8 in He et al. (2022a).

[11,3] The analysis expounded in sections 11.1-2 is closely related to the
analysis previously given in Noblesse and Chen (1995,1997), Noblesse and
Yang (1996) and Noblesse et al. (1996,1999). However, a major difference is
that the analysis expounded in sections 11.1-2 considers the common case
of a dispersion curve that is defined in Cartesian form. This analysis, and
its extension to multiple dispersion curves defined in Cartesian form and
to closed dispersion curves defined in polar form given in sections 11.5-6,
yields general analytical representations suited for practical applications and
accurate numerical evaluation.
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[11,4] See e.g. Lighthill (1958).

[11,5]. The representation of a singular double Fourier integral in terms
of a single Fourier integral, which typically represents the contribution of
pole(s) inside an integration contour in the complex plane, and the Cauchy
principle value of a singular double Fourier integral is widely found in the
literature; e.g. in many expressions for Green functions given in Wehausen
and Laitone (1960) and in the method used in Chen (2015,2019).

[11,6]. The important issues related to the influence of the parame-
ter µ considered in sections 11.3 and 11.4 are not fully understood in No-
blesse and Chen (1995,1997), Noblesse and Yang (1996) and Noblesse et al.
(1996,1999), which essentially assume narrow dispersion strips.

[12,1] This chapter follows sections 9-13 of He et al. (2022a), which is
closely related to He et al. (2020b-c,2021a) and Wu et al. (2021). How-
ever, the flow representations given in chapter 12 are not identical to the
expressions given in He et al. (2022a) because the function ekz for deep
water, or the corresponding function for finite water-depth, is included in
the amplitude function A in He et al. (2022a) but is more properly explicitly
accounted for in the modified expressions that are given in chapter 12.

[12,2] Numerical illustrations and verifications for uniform distributions
of sources and dipoles over rectangular panels are given in He et al. (2020b-
c,2021a) and Wu et al. (2021).
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